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Abstract—Efficient linear system solvers are a critical compo-
nent of numerical methods for solving optimal control problems.
Currently, most direct methods for solving linear systems are
serial, and only a few commercial parallel direct methods exist.
We present a novel direct method that exploits the sparse, banded
structure that arises in optimal control problems, including the
prototypical LQR problem. Using a recursive application of
Schur compliments, the algorithm has a theoretical O(log(N))
complexity in the time horizon, and maps well onto many-core
processors. An open-source implementation demonstrates better
performance than state-of-the-art commercial parallel direct
solvers designed for general sparse symmetric linear systems.

I. MOTIVATION

Parallel computing has changed many aspects of how we ap-
proach algorithm development. With single-processor speeds
reaching asymptotic improvements, it has become increasingly
clear that substantial future improvements in computational
performance must come through parallelization, custom sili-
con, or often a combination of both. While many algorithms in
robotics are naturally parallelizable, especially the data-driven
approaches that frequently appear in perception and reinforce-
ment learning, many algorithms are still inherently serial and
difficult to parallelize. Numerous problems in robotics require
solving large, sparse, and nonlinearly-constrained optimiza-
tion problems. Particularly in optimal control, these problems
should ideally be solved online and onboard the robot, placing
a high demand on computationally efficient algorithms.

While some approaches to motion planning and control are
naturally parallelizable, such as sampling-based approaches
like RRT [1], graph-based approaches that rely on discretiza-
tion of the configuration space [2], or trajectory-sampling
approaches like MPPI [3], they have many limitations. These
algorithms often scale poorly with the dimension of the state
space or the time horizon, have limited ability to deal with
complicated and/or underactuated dynamics, or are limited by
the types of constraints that can be imposed on the system,
such as those used to ensure either physically-realistic or safe
state and control trajectories. Optimization-based methods, on
the other hand, offer many benefits over these approaches, and
have received a lot of attention from both the academic and
commercial robotics communities over the past few years.

Typical approaches to optimal control and the related sub-
problem of trajectory optimization usually fall into one of
two categories: DDP-based approaches that rely on iteratively
generating a local feedback law and simulating the system

forward under the closed-loop feedback policy [4]–[10], or di-
rect collocation methods that solve the problem using general-
purpose nonlinear programming (NLP) solvers like SNOPT
[11], Ipopt [12], or Knitro [13]–[18]. Both of these methods
rely on forming a local approximation to the nonlinear system,
which requires 1st or 2nd-order Taylor series expansions of
the cost, dynamics, and constraints. The calculation of these
expansions is trivially parallelizable over the time horizon.
Parallelizing the optimization algorithm itself, however, is
much more challenging.

To parallelize DDP-based methods, the trajectory is split
into many segments and “glued” back together by additional
constraints [8], [19], [20]. While this approach shows some
promise, a recent study implementing DDP on a GPU found
that increased parallelism led to decreased convergence rates,
leading to a natural limit to the amount of parallelism that
could be exploited [19]. Direct methods, on the other hand,
are almost always dependent on general-purpose NLP solvers,
all of which are currently serial and single-threaded. The
most computationally demanding part of these algorithms is
generally solving a large, sparse linear system of equations
encoding the local optimality conditions for the nonlinear
optimization problem. Efficient methods for parallelizing the
solution of these linear systems are critical for unlocking the
computational improvements necessary to find trajectories for
high-dimensional systems and for long-horizon trajectories.

This paper presents a novel method for solving the LQR
problem, whose solution can be found by solving a banded
linear system of equations. This linear system is prototypical
of those found when solving optimal control problems with
methods like sequential quadratic programming (SQP). Using
a hierarchical set of Schur compliments inspired by the nested-
dissection algorithm used to solve problems for planar graphs
[21], [22], we derive an algorithm with O(log(N)) complexity
in the time horizon. With a modest amount of parallelism, this
algorithm outperforms the benchmark O(N) Riccati recursion
that underlies DDP-based algorithms, while being strictly more
general in its applicability. We also show that the algorithm
is faster and scales better with increased parallelism than
commercial parallel linear-system solvers. Our algorithm is
particularly well-suited to solving long-horizon problems. The
ability to efficiently handle long time horizons is often critical
in high-speed applications such as autonomous trucking, where
a longer planning horizon has a direct impact on the safety and
performance of the controller. Even when solving problems of-



fline, such as finding low-thrust trajectories for space systems
[23], reducing solve times from hours to minutes or seconds
will have a dramatic impact on the approaches we can take
when searching for or designing such trajectories.

The remainder of this paper is structured as follows: In Sec-
tion II we survey methods for solving the LQR problem and
other related parallel solvers for optimal control. In Section
III we review the linear quadratic regulator (LQR) problem
and Schur compliments. We derive our algorithm in Section
IV, demonstrating a novel use of recursive Schur compliments
to solve the LQR problem, followed by considerations for
adapting the algorithm to work well on a many-core processor.
The theoretical performance of the algorithm is compared to
the Riccati solution in Section V, which is followed up by
a comparison of the actual open-source C implementation
against a suite of state-of-the-art sparse matrix solvers in
Section VI, with concluding remarks in Section VII.

II. RELATED WORK

As one of the canonical problems in robotics, the LQR
problem and its variants have received a tremendous amount of
attention over the past 60 years. The work most related to the
current one is a recent paper by Laine and Tomlin [24], which
solves the LQR problem in parallel by splitting the trajectory
into sub-trajectories and adding additional constraints, based
on previous work applying MPC to distributed systems that
used a nearly identical approach to decompose the distributed
system into a set of smaller problems [25].

Recently, the traditional LQR problem has been extended to
work with stage-wise equality constraints [26], [27]. The linear
system (4a) associated with LQR can also be solved using any
of the general techniques for solving sparse linear systems
in parallel, including parallel QR [28], block-cyclic reduction
[29], [30], multigrid methods [31], [32], and indirect Krylov
methods such as preconditioned conjugate-gradient [33].

Other notable work related to parallelizing optimal control
or trajectory optimization problems includes the qpDUNES
solver [34] that parallelizes over the time horizon using
block-cyclic reduction, a recent paper solving contact-aware
problems on a GPU using a combination of indirect methods
and block-cyclic reduction [35], an FPGA implementation
of a linear MPC solver using the MINRES indirect method
[36], and a variety of ADMM or augmented Lagrangian-based
methods [37]–[41].

Like [24], the proposed algorithm parallelizes the LQR
problem over the time horizon, but instead of assuming an
explicit discrete dynamics function, our algorithm can be
trivially extended to work with implicit integrators such as
the Hermite-Simpson method commonly found when solving
optimal control problems with direct collocation. It can also
easily handle stage-wise equality constraints.

While the proposed algorithm borrows ideas from the liter-
ature on solving symmetric sparse linear systems in parallel,
it is, to the authors’ best knowledge, a novel application and
specialization of those ideas to the optimal control problem.

We also provide a documented open-source parallelized imple-
mentation of our algorithm with a convenient wrapper written
in a high-level programming language, where many of the
previously cited works are purely theoretical or don’t provide
an open-source implementation.

III. BACKGROUND

A. Notation

We use interval notation j ∈ (a, b] := {a+1, a+2, . . . , b},
j ∈ [a, b] := {a, a + 1, . . . , b}, for j, a, b ∈ N to denote sets
of consecutive integers. We use angle-bracket notation ⟨x, y⟩
to denote xT y for both vectors and matrix arguments.

B. The Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) problem is the
canonical problem in optimal control, since it can be solved
using a variety of methods and is amenable to theoretical anal-
ysis. It is also of practical significance since LQR problems
arise when an unconstrained nonlinear optimal control prob-
lem is approximated using a 2nd-order Taylor expansion of
the cost function and a linear approximation of the dynamics.
The LQR problem, shown here with affine terms included, has
the form:

minimize
x1:N , u1:N−1

N∑
k=1

1

2
xT
kQkxk + qTk xk

+

N−1∑
k=1

1

2
uT
kRkuk + rTk uk

subject to xk+1 = Âkxk + B̂kuk + fk = 0,

x1 = xinit

(1)

where xk ∈ Rn and uk ∈ Rm are the state and control vectors
at time step k, N is the number of time steps (also referred
to as the time horizon), and Â ∈ Rn×n, B̂ ∈ Rn×m, f ∈
Rn, Q ∈ Rn×n, R ∈ Rm×m, q ∈ Rn, and r ∈ Rm come from
the Taylor expansions of the cost and dynamics about some
reference trajectory (or point).

The well-known first-order optimality, or KKT, conditions
for (1) are [42]:

Qkxk + qk + ÂT
k λk+1 − λk = 0, k ∈ [1, N) (2a)

Rkuk + rk + B̂T
k λk+1 = 0, k ∈ [1, N) (2b)

QNxN + qN − λN = 0 (2c)

xk+1 = Âkxk + B̂kuk + fk, k ∈ [1, N) (2d)
x1 = xinit (2e)

which can be written in matrix form as the following linear
system:

Hv = g (3)



where for N = 4:

H =



Q1 −I ÂT
1

R1 B̂T
1

Q2 −I ÂT
2

R2 B̂T
2

Q3 −I Â
R3 B̂

Q4 −I
−I
Â1 B̂1 −I

Â2 B̂2 −I
Â3 B̂3 −I


(4a)

v =
[
xT
1 uT

1 xT
2 uT

2 xT
3 uT

3 xT
4 λT

1 λT
2 λT

3 λT
4

]T
(4b)

g = −
[
qT1 rT1 qT2 rT2 qT3 rT3 qT4 xT

init f
T
1 fT

2 fT
3

]T
(4c)

Note that H is a symmetric, quasidefinite matrix (known as
a KKT matrix) with Nn+(N −1)m positive eigenvalues and
Nn negative eigenvalues [42].

C. Schur Compliments

A Schur compliment is a common trick that reduces solving
a single large linear system to solving a series of smaller ones.
We will use the Schur compliment to solve symmetric 3x3
block-tridiagonal systems of the form: A D

DT B ET

E C

xy
z

 =

ab
c

 . (5)

We can solve the first and last rows of (5) for x and z:

x = A−1(a−Dy) = ā− D̄y, (6a)

z = C−1(c− Ey) = c̄− Ēy, (6b)

where we calculate the following pieces numerically by fac-
torizing A and C:

D̄ = A−1E, ā = A−1a, (7a)

Ē = C−1D, c̄ = C−1c. (7b)

We can use (6) to eliminate x and z from the middle row,
allowing us to solve for y:

y = −(DT D̄ + ET Ē −B)−1(b− ET c̄−DT ā)

= −B̄−1b̄
(8)

After solving (8) numerically, we can now plug the result into
(6) to get our completed solution vector.

IV. A PARALLEL LQR ALGORITHM

A. Recursive Schur Compliments

We now derive our parallelizable algorithm for solving
linear systems of the form (3). First, we reorder the rows and
columns of (4a) to get a banded matrix with a bandwidth of
2n+m− 1 (see Fig. 1).

Note that, for clarity, we’ve ignored the special boundary
conditions at the first and last time steps. From the coloring
we see that the LQR problem takes the 3x3 block tridiagonal



Q1 ÂT
1

R1 B̂
T
1

Â1 B̂1 −I
−I Q2 ÂT

2

R2 B̂
T
2

Â2 B̂2 −I
−I Q3 ÂT

3

R3 B̂
T
3

Â3 B̂3 −I
−I Q4

R3





x1
u1

λ2
x2
u2

λ3
x3
u3

λ4
x4
u4


= −



q1
r1
f1
q2
r2
f2
q3
r3
f3
q4
r4


(9)

Fig. 1: The LQR linear system, rearranged and partitioned to
appear in the form of (5). The red block in the upper left
corner is A, the red lower-right block is C. The top vertical
green block is D, and the bottom green vertical block is E. The
solution and right-hand-side vectors have also been partitioned,
with the top blue blocks equating to x and a, the middle green
block to y and b, and the bottom blue blocks to z and c. We
use these blocks to solve the LQR problem using the steps in
Sec. III-C.

form of (5). When solving for ā, c̄, D̄, and Ē in (7) we make
a critical observation:

D̄ = −


Q1 ÂT

1

R1 B̂
T
1

Â1 B̂1 −I
−I Q2

R2



−1AT
2

BT
2

, ā = −


Q1 ÂT

1

R1 B̂
T
1

Â1 B̂1 −I
−I Q2

R2



−1
q1
r1
f1
q2
r2

, (10a)

Ē = −


Q3 ÂT

3

R3 B̂
T
3

Â3 B̂3 −I
−I Q4

R4



−1
−I

, c̄ = −


Q3 ÂT

3

R3 B̂
T
3

Â3 B̂3 −I
−I Q4

R4



−1
q3
r3
f3
q4
r4

. (10b)

Due to the banded structure of the matrix, each of these smaller
linear systems also takes the form of (5). Note that, for each
diagonal A or C block, we solve two linear systems, one with
right-hand-side data from the original right-hand-side vector
(shown in blue), and one with right-hand-side data from the
green columns in Fig. 1.

If we apply the same technique to each of these 4 linear
systems, we’d get 16 total linear systems to solve. However,
after eliminating duplicates, we’re left with 12 unique small
linear systems,

D̄1

(1)

= −
[
Q1

R1

]−1
[
ÂT

1

B̂1
1

]
, ā1

(1,2)

= −
[
Q1

R1

]−1[
0
0

]
, ā1

(1,3)

= −
[
Q1

R1

]−1[
q1
r1

]
, (11a)

Ē1

(1)

= −
[
Q2

R2

]−1[
−I

]
, c̄1

(1,2)

= −
[
Q2

R2

]−1
[
ÂT

2

B̂T
2

]
, c̄1

(1,3)

= −
[
Q2

R2

]−1[
q2
r2

]
, (11b)

D̄2

(1)

= −
[
Q3

R3

]−1
[
ÂT

3

B̂1
3

]
, ā2

(1,2)

= −
[
Q3

R3

]−1[
−I

]
, ā2

(1,3)

= −
[
Q3

R3

]−1[
q3
r3

]
, (11c)

Ē2

(1)

= −
[
Q4

R4

]−1[
−I

]
, c̄2

(1,2)

= −
[
Q4

R4

]−1[
0
0

]
, c̄2

(1,3)

= −
[
Q4

R4

]−1[
q4
r4

]
, (11d)

where (11a) and (11b) come from (10a) and (11c) and (11d)
come from (10b). We also introduce some notation, since we



H =



A
(1)
1 D

(1)
1

D
(2)
1B

(1)
1

E
(1)
1 C

(1)
1

B
(2)
1

E
(2)
1

A
(1)
2 D

(1)
2

B
(1)
2

E
(1)
2 C

(1)
2



, g =



a
(1,3)
1

b
(1,3)
1

c
(1,3)
1

b
(2,3)
1

a
(1,3)
2

b
(1,3)
2

c
(1,3)
2


Fig. 2: The LQR KKT system after recursively partitioning
with Schur compliments with a depth of K = 2 = log2(N)
with N = 4. The labels follow the notation used in Algorithm
1. Levels are enumerated starting at j = 1 for the deepest
recursion level (the orange and red blocks), up to j = K (the
green blocks). We assign the right-hand-side vector a level of
K + 1 (the blue blocks). We use A

(j)
i and C

(j)
i to denote

the ith A and C blocks at level j, e.g. the block outlined in
black is C

(2)
1 . We use the same notation for D(j)

i and E
(j)
i , as

shown. We use a
(j,p)
i and c

(j,p)
i to refer to the block with the

rows of D(j)
i and E

(j)
i , respectively, and the columns of either

D
(p)
i or E(p)

i . For example, the block outlined in red is c
(1,2)
2

since it corresponds to the rows of the red block E
(1)
2 but

taken from the green data / columns of level p = 2. Since the
right-hand-side vector g is given a level of K + 1, its blocks
all have p = 3. We’ve partitioned the g vector from the lowest
level, coloring the blocks corresponding to the B

(j)
i blocks to

match the level j.

need to distinguish between all of the different ā, c̄, D̄, and Ē

blocks. We use ā
(j,p)
i and c̄

(j,p)
i to denote the ith ā or c̄ at a

recursion depth of j using right-hand-side data from a “parent”
depth of p, where depth is measured from the bottom. We also
note that, as suggested by (11), ā

(j,j)
i = D̄

(j)
i and c̄

(j,j)
i =

Ē
(j)
i . The notation is further clarified in Fig. 2. Since the linear

systems in (10) all involve block-diagonal matrices, we can
solve all of these systems directly using e.g. a dense Cholesky
decomposition. With these pieces we use (8) to get all the y’s,
followed by (6) to get all the x’s and z’s, which concatentated
form the ā, c̄, D̄, and Ē at the next level, i.e. (10). These
are then used to solve the top-level Schur compliment for the
solution vector using the same procedure.

It should be clear that the resulting algorithm is naturally
recursive and results in a binary tree of Schur compliments,
since each 3x3 Schur compliment requires solving another
Schur compliment problem for both A and C. Borrowing
terminology from tree graphs, we will often refer to e.g. D(j)

i

as the D for the ith “leaf” of “level” j. While a naı̈ve recursive
implementation of this algorithm turns out to be computation-
ally inefficient and hard to parallelize, we can “unroll” the
recursion following the steps of the previous paragraphs. The

resulting algorithm is summarized in Algorithm 1.
As we saw in the preceding paragaphs, our algorithm starts

at the lowest level by factorizing all of the orange blocks along
the diagonal, and then using those factorizations to solve all of
the systems in (11), corresponding to lines 1-3. It’s important
to note that we get different right-hand-side data for each of
the “upper” levels, corresponding to the data from the red,
green, and blue blocks from the same rows as the diagonal
block. After this initial computation, in lines 7-18 we loop over
each of the levels, using the pieces from the previous level to
calculate a y and then x and z for each of the upper levels to
get all the ā, c̄, D̄, or Ē for the next level. In Algorithm 1, the
right-hand-side vector is represented as the highest level, K+1
where K = log2 N is the number of levels for a problem with
a horizon length of N (see Fig. 2 for more details).

The following section describes further considerations and
modifications that are needed to efficiently implement the
algorithm on a many-core processor.

Algorithm 1 Recursive Schur Compliments

1: for i ∈ (0, 2K−1] do
2: for p ∈ (0,K + 1] do
3: Solve A

(1)
i ā

(1,p)
i = a

(1,p)
i using Cholesky

4: Solve C
(1)
i c̄

(1,p)
i = c

(1,p)
i using Cholesky

5: end for
6: end for
7: for j ∈ (0,K] do
8: for i ∈ (0, 2K−j ] do
9: B̄

(j)
i = ⟨D(j)

i , D̄
(j)
i ⟩+ ⟨E

(j)
i , Ē

(j)
i ⟩ −B

(j)
i

10: Factorize B̄
(j)
i

11: for p ∈ (j,K + 1] do
12: b̄

(j,p)
i ← b

(j,p)
i − ⟨D(j)

i , ā
(j,p)
i ⟩ − ⟨E(j)

i , c̄
(j,p)
i ⟩

13: Solve −B̄(j)
i y

(j,p)
i = b̄

(j,p)
i using Cholesky

14: x
(j,p)
i ← ā

(j,p)
i − D̄

(j)
i y

(j,p)
i

15: z
(j,p)
i ← c̄

(j,p)
i − Ē

(j)
i y

(j,p)
i

16: end for
17: end for
18: end for

B. Parallelization

We now proceed with the derivation of our final algorithm,
a “flattened” version of Algorithm 1 to make it amenable to
implementation on a many-core processor using e.g. OpenMP.
By carefully analyzing the dependency graph of Algorithm 1
we identified the critical path, which we used to determine the
synchronization points for the algorithm. This section provides
the key highlights of the final algorithm; interested readers
should consult the provided open-source implementation for
the full details of the algorithm.

In lines 1-6 of Algorithm 1 we compute ā, c̄, D̄, and Ē
at the bottom level, using right-hand-side data from each of
the upper levels. It should be obvious looking at Fig. 1 that
at most two levels plus the right-hand-side at level K + 1
will have non-zero data, since any row containing a Qk or



Rk has at most two other entries. We can replace these lines
with a loop over time indices k that, for each Qk and Rk,
solves −Q−1

k qk, Q−1
k ÂT

k , Q−1
k (−I), −R−1

k rk, and R−1
k B̂T

k ,
with special-casing applied to the initial and final time steps.
We denote the function that handles all of this for each time
step SOLVELEAF(k).

Examining the main loop of Algorithm 1, we notice that we
need to calculate many terms of the form

⟨D, ā⟩ or ⟨E, c̄⟩ . (12)

where the ā and c̄ terms come from each of the upper
levels (line 12), as well as the current one (line 9). We
can calculate all of these terms in parallel since they are
completely independent. While the inner dimension of these
inner products gets larger at higher levels, they all have the
same computational cost since the D and E for each level all
have the same form:

D=


...

ÂT
k

B̂T
k

 E=

−I0
...

 (13)

Leveraging this structure allows us to compute inner products
solely on the blocks corresponding to the states and controls
at the current and next time steps. We denote the function
that computes b̄ for level j, leaf i (which includes calculating
B̄ since b̄

(j,j)
i = B̄

(j)
i ) and parent level p as INNERPROD-

UCTS(i, j, p).
After calculating all the b̄ and B̄ terms we compute the

Cholesky factorization of B̄ and solve for y = B̄−1b̄ for
all leaves i and upper levels p. We denote the functions
that do each of these operations FACTORIZEBBAR(i, j) and
SOLVEBBAR(i, j, p).

The last step is to calculate x and z (lines 14-15 in
Algorithm 1). This step updates all of the ā, c̄, D̄, and Ē terms
for the next level. We can see from Fig. 2 that this affects every
row of the columns associated with the upper levels, except
those which correspond to a B for the current or upper levels.
Since our updates are of the form:

ā← ā− D̄y (14a)
c̄← c̄− Ēy, (14b)

each row can be updated in parallel. We perform these updates
blockwise, parallelizing over knot points and upper levels. We
can write down a function UPATESCHUR(k, j, p) that performs
(14) based on the knot point index k, level j, and upper level
p.

Putting this all together, our algorithm is summarized in
Algorithm 2, which we refer to as rsLQR in the following
sections. As shown by the parfor loops in Algorithm 2, most
of the computation can be done in parallel. Each parfor carries
an implicit synchronization before continuing to the next loop,
and corresponds with the synchronization steps needed along
the critical path. The next section analyses the theoretical
computational properties of this algorithm.

Algorithm 2 Recursive Schur LQR (rsLQR)

1: parfor k = 1:N do
2: SOLVELEAF(k)
3: end parfor
4: for j ∈ (0, D] do
5: L = 2K−j (number of leaves)
6: parfor i ∈ (0, L], p ∈ [j,K + 1] do
7: INNERPRODUCTS(i, j, p)
8: end parfor
9: parfor i ∈ (0, L] do

10: FACTORIZEBBAR(i, j)
11: end parfor
12: parfor i ∈ (0, L], p ∈ (j,K + 1] do
13: SOLVEBBAR(i, j, p)
14: end parfor
15: parfor k ∈ (0, N ], p ∈ (j,K + 1] do
16: UPDATESCHUR(k, j, p)
17: end parfor
18: end for

V. THEORETICAL COMPLEXITY

We compare the theoretical complexity of our algorithm
against Riccati recursion, an extremely efficient but inherently
serial algorithm for solving LQR problems. We approximated
the floating point operations for each algorithm using the
approximate floating point complexity for the fundamental
linear algebra operations given in Table I. To account for
parallelization, the total number of operations of each of the
parallel loops was divided by the number of processors, thresh-
olding when the number of processors exceeded the number
of individual tasks. Only parallelization of the parallel for-
loops in Algorithm 2 is considered: low-level parallelization
of the linear algebra via SIMD instructions, instruction-level-
parallelism, or multithreading was ignored for both algorithms.
While this could offer significant performance improvements,
achieving an implementation that efficiently scales with both
levels of parallelism is nontrival and left for future work.

The state, control, and horizon complexity for Riccati and
our algorithm rsLQR with an increasing number of processors
is shown in Fig. 3. The maximum number of processors, 4096,
was chosen such that all parallelization that can be exploited
is exploited for the longest horizon length of 512. The number
of processors needed to fully exploit the parallelism available
with N time steps is given by:

Pmax = N (log2(N)− 1) (15)

As shown, the proposed algorithm beats Riccati recursion
with 32-64 cores. With 64 cores—currently the high end of
what is available on modern multicore CPUs—the proposed
algorithm is 2-5x faster than standard Riccati recursion. When
fully exploiting the given parallelism (again, ignoring low-
level parallelism in the linear algebra), we achieve the ex-
pected log(N) complexity, with performance about 45x faster
than Riccati at a horizon length of 512. For problems with



TABLE I: Theoretical Complexity for Linear Algebra

Method Complexity

Matrix Multiplication 2nmp
Matrix Multiplication w/ addition np(3m+ 1)

Cholesky factorization n(n+1)(n−1)
3

+ n+
n(n+1)

2
Cholesky solve 2pn2

For matrix multiplication C = AB, A ∈ Rn×m, B ∈ Rm×p. For
cholesky factorization, A ∈ Rn×n, and for a Cholesky solve Ax = b,
b ∈ Rn×p.
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dimensions of a standard 7DOF robot arm).

Fig. 3: Theoretical complexity vs Riccati for an increasing
number of processors. The legend entry rsLQR(P ) represents
the rsLQR algorithm run with P processors. All results are in
units of millions of floating-point operations.

thousands of knot points (e.g. 4096), such as those found in
space trajectory design [23], our algorithm is over 250x faster
with n = 14 and m = 7.

VI. COMPUTATIONAL RESULTS

A. Implementation Details

The algorithm was implemented in pure C, using OpenMP
for shared-memory parallelization. A Julia wrapper is also pro-

vided. While the algorithm may also map well to a distributed-
memory architecture, given its relatively low communication
requirements between workers, this is left for future work.
Using OpenMP, a single threadpool was maintained for the
entire algorithm, and work was statically divided amongst the
threads by dividing the work into equal-sized portions.

Since the algorithm only requires basic element-wise matrix
operations, matrix multiplication, and Cholesky decomposi-
tion, a custom linear algebra library was written in pure C,
which provided better scaling with the number of cores than
Eigen [43], OpenBLAS [44], or Intel MKL [45]. The memory
required by the algorithm is allocated in one large chunk,
which is subsequently assigned in consecutive blocks to the
blocks required by the algorithm, increasing data locality and
reducing the likelihood of cache misses.

The code for the examples was compiled in Release mode
(i.e. full optimizations) using Clang 13 on a desktop with
an AMD 3990X processor with 64 cores running Pop! OS
21.10. The results for Riccati recursion are based on an
implementation in pure C using the exact same linear al-
gebra routines and build system as the rsLQR algorithm.
To guarantee that all linear systems were strictly quasidefi-
nite, a small about of regularization was added to the dual
variables for all problems. The code is freely available at
https://github.com/bjack205/rsLQR.

B. Numerical Results

As shown in Fig. 4, actual performance closely matched
theoretical predictions once the horizon was long enough
to offset the overhead of launching a significant number of
worker threads. At a horizon length of 512 with 64 cores, our
algorithm is 50% faster than Riccati recursion.

Figure 5 compares the computation time versus horizon
length for several solvers. All solvers were called from Julia,
and solve times are the median over 100 samples. As shown,
the proposed algorithm performs significantly better on long
horizons than parallelized commercial solvers for symmetric
sparse systems, with a 183% improvement over Pardiso 6.0
[46] and an 84% improvement over MA86 [47] at a horizon
length of N = 512. In our tests, neither of these solvers
scaled very well with increased parallelism, often only pro-
viding marginal improvements. Our algorithm demonstrated
performance on-par with with the SuiteSparse package, and
was only beat by the single-threaded QDLDL algorithm [48],
whose performance on these KKT systems is significantly
better than all other solvers.

VII. DISCUSSION

We have demonstrated a new parallelizable algorithm for
solving the sparse linear systems that arise when solving
trajectory optimization and other related optimal-control prob-
lems. This algorithm offers greater generality than other
LQR-based approaches, allowing straightforward adaptations
to handle implicit integration methods and constraints. With
64 parallel threads, the proposed algorithm offers a 50%
improvement over Riccati recursion at a horizon length of 512,

https://github.com/bjack205/rsLQR
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while again being strictly more general in its applicability. It
also beats existing commerical parallelized sparse symmetric
linear system solvers such as HSL MA86 (by about 80%) and
Pardiso 6.0 (by about 180%) at a horizon length of 512, and
scales much better with increased parallelism.

Substantial areas for future work remain, such as adapting
the implementation to work on distributed-memory architec-
tures and comparisons with distributed memory linear algebra
packages such as ScaLAPACK [49]. While our algorithm’s
performance was only matched or beaten by SuiteSparse
and QDLDL, these algorithms don’t work on large-scale
distributed-memory architectures. Future work may also in-
vestigate GPU or FPGA implementations; however, while
modern GPUs have thousands of “cores”, mapping the current

algorithm onto the SIMD-style parallelism of a GPU would
require significant modification to maintain high performance
due its communication and synchronization requirements.
Future work will also investigate the performance benefits
of integrating the proposed method into nonlinear trajectory
optimization methods such as direct collocation via sequential
quadratic or convex programming.
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