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The ability to engineer high-fidelity gates on quantum processors in the presence of systematic
errors remains the primary barrier to achieving quantum advantage. Quantum optimal control meth-
ods have proven effective in experimentally realizing high-fidelity gates, but they require exquisite
calibration to be performant. We apply robust trajectory optimization techniques to suppress gate
errors arising from system parameter uncertainty. We propose a derivative-based approach that
maintains computational efficiency by using forward-mode differentiation. Additionally, the effect
of depolarization on a gate is typically modeled by integrating the Lindblad master equation, which
is computationally expensive. We employ a computationally efficient model and utilize time-optimal
control to achieve high-fidelity gates in the presence of depolarization. We apply these techniques
to a fluxonium qubit and suppress simulated gate errors due to parameter uncertainty below 10−7

for static parameter deviations on the order of 1%.

I. INTRODUCTION

Quantum optimal control (QOC) is a class of opti-
mization algorithms for accurately and efficiently manip-
ulating quantum systems. Early techniques were pro-
posed for nuclear magnetic resonance experiments [1–
7], and applications now include superconducting cir-
cuits [8–24], neutral atoms and ions [25–36], nitrogen-
vacancy centers in diamond [37–43], and Bose-Einstein
condensates [44–47]. In the context of quantum com-
putation, optimal control is employed to achieve high-
fidelity gates while adhering to experimental constraints.
Experimental errors such as parameter drift, noise, and
finite control resolution cause the system to deviate from
the model used in optimization, hampering experimental
performance [9, 14, 20, 33, 48]. Robust control improves
upon standard optimal control by encoding model pa-
rameter uncertainties in optimization objectives, yielding
performance guarantees over a range of parameter values
[49–51]. We adapt robust control techniques from the
robotics community to mitigate parameter-uncertainty
errors for a superconducting fluxonium qubit.

Analytically-derived control pulses that mitigate
parameter-uncertainty errors include composite pulses
[52–55], pulses designed by considering dynamic and ge-
ometric phases [56, 57], and pulses obtained with the
DRAG scheme [58]. As compared to analytical tech-
niques, QOC is advantageous for designing pulses that
consider all experimental constraints and performance
tradeoffs [17], and for constructing operations without
a known analytic solution [9, 14]. Accordingly, recent
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work has sought to achieve robustness in QOC frame-
works using closed-loop methods [59–62] and open-loop
methods [3, 20, 42, 63–67].

In this work, we study three open-loop robust con-
trol techniques that make the quantum state trajectory
less sensitive to the uncertainties of static and time-
dependent parameters:

1. A sampling method, similar to the work in Refs. [3,
20, 42, 65].

2. An unscented sampling method [68–70] adapted
from the unscented transform [71, 72] used in state
estimation.

3. A derivative method, which penalizes the sensitiv-
ity of the quantum state trajectory to uncertain
parameters.

We apply these techniques to the fluxonium qubit pre-
sented in [73]. We also show that QOC can solve impor-
tant problems associated with fluxonium-based qubits:
exploiting the dependence of T1 on the controls to miti-
gate depolarization and synchronizing the phase of qubits
with distinct frequencies. To ameliorate depolarization,
we perform time-optimal control and employ an efficient
depolarization model for which the computational cost
is independent of the Hilbert space dimension. Lever-
aging recent advances in trajectory optimization within
the field of robotics, we solve these optimization problems
using ALTRO (Augmented Lagrangian TRajectory Op-
timizer) [74], which can enforce constraints on the control
fields and the quantum state trajectory.

This paper is organized as follows. First, we describe
ALTRO in the context of QOC in Sec. II. We outline re-
alistic constraints for operating the fluxonium and define
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the associated QOC problem in Sec. III. Then, we for-
mulate a method for suppressing depolarization in Sec.
IV. Next, we describe three techniques for achieving ro-
bustness to static parameter uncertainties in Sec. V. We
adapt the same techniques to mitigate 1/f flux noise in
Sec. VI.

II. BACKGROUND

In this section, we review the QOC problem statement
and describe the ALTRO solver [74]. QOC concerns a
vector a(t) of time-dependent control fields that steer
the evolution of a quantum state |ψ(t)〉. The evolution of
the state is governed by the time-dependent Schrödinger
equation (TDSE),

i~
d

dt
|ψ(t)〉 = H(a(t), t) |ψ(t)〉 . (1)

The Hamiltonian H(a(t), t) is determined by the quan-
tum system and the external control fields. The QOC
problem is to find the controls that minimize a functional
J [a(t)], which we call the objective. To make the problem
numerically tractable, the quantum state and controls
are discretized into N time steps, |ψ(tk)〉 → |ψk〉 and
a(tk) → ak where tk = tk−1 + ∆t and k ∈ {1, ..., N}. In
the case of a single state-transfer problem, the objective
is the infidelity of the time-evolved final state |ψN 〉 and

the intended target state |ψT 〉, J(a) = 1−|〈ψT |ψN (a)〉|2.
Standard QOC solvers compute derivatives of the objec-
tive ∇J(a), which can easily be used to implement first-
order optimization methods [3, 17, 75, 76].

Alternatively, the QOC problem can be formulated
as a trajectory optimization problem and solved using
specialized solvers developed by the robotics community
[74, 77–79]. The objective J(a) =

∑
k `k(xk,uk) is ex-

pressed in terms of the cost function at each time step
`k, where xk is the augmented state vector and uk is the
augmented control vector. We use the term augmented
because these vectors contain all of the relevant variables
in the optimization problem, not just the quantum state
and the control fields, for an example see Sec. III. The
augmented control contains all variables that the experi-
mentalist may manipulate, and the augmented state con-
tains all variables that depend on those in the augmented
control. The variables in the augmented states depend
on those in the augmented controls as defined by the dif-
ferential equations governing the physical system, which
are encoded in the discrete relation xk+1 = f(xk,uk).
For QOC, f(xk,uk) – which we call the discrete dynamics
function – propagates the quantum state by integrating
the TDSE (1) using a Runge-Kutta method [80] or an
exponential integrator [81–84].

We incorporate constraints on the augmented con-
trols and states by formulating them as inequalities
gk(xk,uk) ≤ 0 or equalities hk(xk,uk) = 0. The con-
straint functions gk and hk may be vector-valued to en-

code multiple constraints, and equalities and inequalities
are understood component-wise. To quantify constraint
satisfaction, we define each constraint’s violation as the
magnitude of its deviation: max(g(·), 0) or |h(·)|, where g
and h are components of constraint functions gk and hk,
respectively. Stated concisely, the trajectory optimiza-
tion problem is:

minimize
x1,...,xN

u1,...,uN−1

N∑
k=1

`k(xk,uk), (2a)

subject to xk+1 = f(xk,uk) ∀ k, (2b)

gk(xk,uk) ≤ 0 ∀ k, (2c)

hk(xk,uk) = 0 ∀ k. (2d)

We have formulated the problem such that the cost and
constraint functions at time step k may only depend on
the augmented control and state at time step k. Al-
though this structure may appear limiting, the problem
can typically be reformulated to accomodate any cost
or constraint function, for an example see Sec. III, and
the ALTRO solver, which we introduce in the following
discussion, exploits this structure to efficiently solve the
problem.

Standard techniques for solving (2a)-(2d) typically fall
into two categories: direct methods [85, 86] and indi-
rect methods [87]. For indirect methods, the augmented
controls are the decision variables, i.e., the variables the
optimizer adjusts to solve the problem. The augmented
states are obtained from the augmented controls using
the discrete dynamics function, and they are used to
evaluate derivatives of the cost functions. Then, the
derivative information is employed to update the aug-
mented controls. This approach is taken by standard
QOC solvers such as GOAT [75], GRAPE [3, 17], and
Krotov’s method [76]. Conversely, direct methods treat
both the augmented controls and states as decision vari-
ables. In addition to minimizing the cost functions, the
optimizer uses derivative information for the discrete dy-
namics function to satisfy the dynamics constraint (2b)
to a specified tolerance. In this sense, the TDSE (1) is
a constraint that may be violated for intermediate steps
of the optimization, where the quantum states need not
be physical. The direct approach lends itself to a nonlin-
ear program formulation, for which a variety of general-
purpose solvers exist [88, 89].

Recent state-of-the-art solvers, such as ALTRO, com-
bine the indirect and direct methods in a two-stage ap-
proach. First, ALTRO employs an indirect solving stage
using the iterative linear-quadratic regulator (iLQR) al-
gorithm [90] as the internal solver of an augmented La-
grangian method (ALM) [91–93]. In the second direct
stage, ALTRO uses a projected Newton method [94, 95].
Next, we provide a more detailed summary of these two
stages.

iLQR is an indirect method for minimizing the objec-
tive subject to the dynamics constraint, i.e., solving (2a)-
(2b). First, iLQR uses an initial guess for the augmented
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controls to obtain the augmented states with the dis-
crete dynamics function. iLQR then constructs quadratic
models for each cost function using their zeroth-, first-
and second-order derivatives in a Taylor expansion about
the current augmented controls and states. These mod-
els are used with a recurrence relation between time steps
to obtain the locally optimal update for the augmented
controls. This recurrence relation is possible to derive
in closed form because cost function contributions come
only from the augmented control and state at a single
time step [96]. Finally, a line search [97] is performed
in the direction of the locally optimal update to ensure
a decrease in the objective. This procedure is repeated
until convergence is reached.

While indirect solvers like iLQR are computationally
efficient and maintain high accuracy for the discrete dy-
namics throughout the optimization, they cannot han-
dle nonlinear equality and inequality constraints (2c)-
(2d). For QOC, a popular approach to handle such con-
straints is to add the constraint functions to the objec-
tive [14, 17, 20, 67]. However, this strategy does not
guarantee that the constraints are satisfied as the solver
trades minimization of the cost functions and constraint
functions against each other. ALM remedies this issue
by adaptively adjusting a Lagrange multiplier estimate
for each constraint function to ensure the constraints are
satisfied. ALM adds terms that are linear and quadratic
in the constraint functions to the objective. Then, the
new objective is minimized with iLQR. If the solution
obtained with iLQR does not satisfy the constraints, the
prefactors for the constraint terms in the objective are
increased intelligently and the procedure is repeated.

ALM converges superlinearly, but poor numerical con-
ditioning may lead to small decreases in the constraint vi-
olations near the locally optimal solution [98]. To address
this shortcoming, ALTRO projects the solution from the
ALM stage onto the constraint manifold using a (direct)
projected Newton method, achieving ultra-low constraint
violations ∼ 10−8. For more information on the details
of the ALTRO solver, see Refs. [74, 99].

As opposed to standard QOC solvers, ALTRO can sat-
isfy constraints on both the control fields and quantum
states to tight tolerances. This advantage is crucial for
this work, where multiple medium-priority cost functions
are minimized subject to many high-priority constraints.

III. QOC FOR THE FLUXONIUM

In the following, we optimize quantum gates for the
superconducting fluxonium qubit – a promising building
block for quantum computers due to its high coherence
times [73, 100–104]. In this section, we use the trajectory
optimization formalism (2a)-(2d) to define the optimiza-
tion problem (6a)-(6h), which we extend in subsequent
sections to account for experimental error channels. To
high accuracy, we approximate the fluxonium Hamilto-

nian near the flux-frustration point as a two-level system:

H/h = fq
σz
2

+ a(t)
σx
2
. (3)

Here, fq is the qubit frequency at the flux-frustration
point, a(t) is the control governing the flux offset from the
flux-frustration point, h is Planck’s constant, and σz, σx
are Pauli matrices. Although the coherent dynamics can
be described with this two-level system model, our noise
model, experimental constraints, and system parameters
consider the full system, and they are representative of
the fluxonium presented in [73].

First, we introduce the augmented control and state
for the fluxonium gate problem. Since the ALTRO im-
plementation we use does not currently support complex
numbers, we represent the quantum states in the isomor-
phism H(Cn) ∼= H(R2n) given in [17],

H |ψ〉 ∼=
(
Hre −Him

Him Hre

)(
|ψ〉re
|ψ〉im

)
. (4)

We use ψ – abandoning bra-ket notation – to denote the
real representation of a state given by the right-hand-side
of (4). To refer to the discrete moments of the flux, we

introduce the notation
∫
t
ak ≡

∫ tk
t1
a(t) dt, ak ≡ a(tk),

dnt ak ≡ dna(t)/dtn|t=tk . The augmented control and
state are:

uk =
(

d2
tak

)
, xk =


ψ0
k

ψ1
k∫

t
ak

ak

dtak

 . (5)

Here, the superscript on the quantum states i ∈ {0, 1}
acts as a label. In standard QOC frameworks, the deriva-
tives of the control fields are obtained with finite differ-
ence methods, e.g., dtak ≈ (ak+1− ak)/∆t [17]. Because
ALTRO requires that cost functions do not use informa-
tion from multiple time steps, we make d2

tak a decision
variable and numerically integrate coupled ODEs to ob-
tain dtak, ak, and

∫
t
ak so that we may penalize them

in cost functions. Similarly, the quantum states are ob-
tained by numerically integrating the TDSE (1) with the
fluxonium Hamiltonian (3) and the given flux ak. These
numerical integration rules are implemented in the dis-
crete dynamics function for the problem, and they give
rise to the dynamics constraint (6b).

Next, we outline the constraints for this problem.
Casting this problem in terms of a multi-state trans-
fer problem, we fix as the initial states |ψ0

1〉 = |0〉,
|ψ1

1〉 = |1〉 (6c). The states at the final time step are con-
strained to be the target states |ψiN 〉 = |ψiT 〉 ≡ U |ψi1〉 ∀ i
(6e) where U = X/2, Y/2, Z/2 denotes the target gate.
Furthermore, we impose the normalization constraint

| 〈ψik|ψik〉|
2

= 1 ∀ i, k (6g) to ensure the solver does not
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take advantage of discretization errors in numerical in-
tegration. For the flux, we have the initial condition∫
t
a1 = dta1 = 0 (6d). We also enforce the boundary

condition a1 = aN = 0 (6d), (6f) so the gates may be
concatenated arbitrarily. We impose the zero net-flux
constraint

∫
t
aN = 0 (6f) which mitigates the inductive

drift ubiquitous in flux-bias lines [73, 105, 106]. Addi-
tionally, the flux is constrained by |ak| ≤ 0.5 GHz ∀ k
(6h) to ensure the two-level approximation remains valid
(3). Above 0.5 GHz, the relationship between the en-
ergy levels and the flux becomes strongly non-linear. All
gates presented in this work satisfy these constraints to
a maximum violation of ∼ 10−8.

The cost function at each time step is `k(xk,uk) =
(xk − xT )TQk(xk − xT ) + uTkRkuk where Qk and Rk
are diagonal matrices of hyperparameters that assign
weights to cost function contributions. The Qk term
penalizes deviations from the target augmented state
xT = (ψ0

T , ψ
1
T , 0, 0, 0)T , which is consistent with the con-

straints we have imposed on |ψiN 〉,
∫
t
aN , and aN . Ac-

cordingly, this term penalizes the squared difference of
ψik and ψiT and penalizes the norm of

∫
t
ak, ak, and dtak.

We penalize the squared difference of the final and tar-
get quantum states, rather than their infidelities, because
the Hessian of the squared-difference cost function is di-
agonal – which makes matrix multiplications fast – and
we wish to optimize Z/2 gates, which requires a metric
that is sensitive to global phases for the initial states |0〉
and |1〉. Additionally, the Rk term penalizes the norm
of d2

tak. Penalizing the norm of d2
tak and dtak makes

ak smooth, which mitigates high-frequency AWG transi-
tions. Stated succinctly, the optimization problem takes
the form:

minimize
x1,...,xN

u1,...,uN−1

N∑
k=1

(xk − xT )
T
Qk(xk − xT ) +

N−1∑
k=1

uk
TRkuk

(6a)

subject to xk+1 = f(xk,uk) ∀ k, (6b)

|ψ0
1〉 = |0〉 , |ψ1

1〉 = |1〉 , (6c)∫
t
a1 = a1 = dta1 = 0, (6d)

|ψiN 〉 = |ψiT 〉 ∀ i, (6e)∫
t
aN = aN = 0, (6f)

|
〈
ψik
∣∣ψik〉|2 = 1 ∀ i, k, (6g)

|ak| ≤ 0.5 GHz ∀ k. (6h)

Next, we remark on our problem formulation. We put
a cost function at all time steps because it benefits the
iLQR solving stage [99]; although this may incentivize
early achievement of the desired gate, as in Ref. [17], we
are primarily concerned with achieving the gate at the
final time step, which the target-state constraint (6e) en-
sures. Additionally, the target-state constraint requires
the final state to match the target state, including its
global phase, up to our chosen maximum constraint vio-
lation ∼ 10−8. If we did not impose this constraint, the

optimizer would be allowed to sacrifice the closed-system
gate error to achieve better performance on the other cost
functions, which is undesirable. To enforce a constraint
in standard QOC frameworks, the prefactor for the con-
straint function is manually increased between separate
optimization instances until the constraint is satisfied
[14, 17, 20], which becomes infeasible for more than one
constraint. ALM automates these prefactor updates to
find a solution that satisfies all of the given constraints.
Hence, ALTRO’s ability to handle multiple constraints
makes it an attractive solver for QOC problems.

In extraordinarily difficult cases of QOC, it may be
impossible to obey the physics of the system and achieve
the desired gate [8], i.e., the dynamics constraint (6b)
and the target-state constraint (6e) may be mutually un-
satisfiable. In this case, the prefactors for the constraint
function terms in the ALM objective will tend to infinity
– leading to numerical instability – and the optimization
will not converge. To maintain a constrained approach
in this situation, the maximum constraint violation for
the target-state constraint can be raised to a level com-
mensurate with the minimum acceptable gate error.

Finally, for ALTRO’s first indirect stage, the aug-
mented states are obtained explicitly with the discrete
dynamics function, so the dynamics constraint and initial
conditions (6b)-(6d) are satisfied by construction. In this
stage, the rest of the constraint functions (6e)-(6h) are
added to the objective in their isomorphism-equivalent
form (4). Conversely, for the second direct stage, all of
the constraints (6b)-(6h) are used to define the projection
onto the constraint manifold, and the objective is unmod-
ified. Hence, the quantum states become free parameters
that are adjusted to satisfy the TDSE. Although the final
solution’s deviation from the TDSE is never more than
the maximum constraint violation, we explicitly integrate
the TDSE when reporting gate errors to ensure accuracy.
Exploring the benefit of direct optimization approaches
for QOC is an interesting direction for future work.

IV. DEPOLARIZATION MITIGATION

In this section, we outline a method for optimizing the
flux to mitigate depolarization. For many superconduct-
ing circuits, the depolarization time T1 is independent of
the control parameters, so the fastest possible gate incurs
the least depolarization error [107]. For the fluxonium,
however, T1 is strongly dependent on the flux. We en-
able the optimizer to trade longer gate times for longer
T1 times, or shorter T1 times for shorter gate times, by
making the gate time a decision variable. Additionally,
previous work has modeled the gate error due to depo-
larization by evolving density matrices under a master
equation [42, 107], or evolving a large number of states
in a quantum trajectory approach [108]. We avoid the
increase in computational complexity required for these
techniques by penalizing the integrated depolarization
rate in optimization.
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FIG. 1. (a) Flux pulses for the numerical gates (dark blue) and the analytic gates (light pink). (b) T1 interpolation
function used in optimization. Circle markers indicate measured T1 times. Non-circle markers are plotted at the

time-averaged absolute flux and the time-averaged T1 time for each pulse. (c) Cumulative gate errors due to
depolarization as a function of the number of gates applied. Cumulative gate errors for the numerical Z/2 and Y/2

gates are indistinguishable. Inset shows log-scaled cumulative gate errors for small gate counts.

The integrated depolarization rate is given by,

D1(t) =

∫ t

0

T−1
1 [a(t′)]dt′. (7)

For the gates we consider here, where the gate time
is small compared to T1, the integrated depolarization
rate is proportional to the probability of a depolariza-
tion event. Additionally, the integrated depolarization
rate is a reasonable proxy for the gate error incurred be-
cause depolarization errors are incoherent – they increase
monotonically in time without interference. The inte-
grated depolarization rate is appended to the augmented
state (5) and its norm is penalized in the Qk term of
the objective by setting the corresponding element of the
target augmented state to zero, see (6a). T1 as a func-
tion of the flux is obtained by evaluating a spline fit to
experimental data, see Fig. 1(b).

Alternatively, modeling the depolarization with a mas-
ter equation approach would require adding density ma-
trices of size n×n to the augmented state, and a quantum
trajectory approach would require adding many states of
size n to the augmented state, where n is the dimension of
the Hilbert space. By contrast, the integrated depolariza-
tion rate is a single real number; thus, the computational
complexity of evaluating this depolarization model does
not scale with the dimension of the Hilbert space.

To perform time-optimal control, we make the dura-
tion between time steps a decision variable [74]. The
square root of the duration

√
∆tk is appended to the

augmented control (5) and its square |∆tk| is used for
integration in the discrete dynamics function. Although
we constrain the bounds of the duration between rea-
sonable positive values to maintain numerical stability,
the optimizer may assign negative values to the duration

for intermediate optimization iterations, so this squaring
approach maintains positivity.

We analyze the effect of depolarization on the X/2,
Y/2, and Z/2 gates obtained with our numerical method
and the corresponding analytic gates presented in [73].
We use the Lindblad master equation to simulate T1 dis-
sipation for successive gate applications, and compute
the cumulative gate error after each application, see Ap-
pendix A. The gate error reported in this text is the infi-
delity of the evolved state and the target state averaged
over 1000 pseudo-randomly generated initial states.

The flux pulses for the numerical gates are approx-
imately periodic with amplitudes ∼ 0.2GHz, see Fig.
1(a). They are reminiscent of the analytically deter-
mined Floquet operations for a fluxonium described in
[109] and realized in [110]. The numerical gate times are
greater than the analytic gate times, but the numerical
flux pulses spend more time at larger flux values, achiev-
ing higher T1 times on average, see Fig. 1(b). The single-
gate errors for both the analytic and numerical gates are
less than 10−4, which makes them sufficient for quantum
error correction – a prerequisite for fault-tolerant quan-
tum computing [111–113]. However, the numerical gates
achieve single-gate errors ∼ 5 times less than those for
the analytic gates, which tracks closely with their rela-
tive improvement on the integrated depolarization rate
metric, see Appendix A. This advantage in single-gate
errors corresponds to a significant reduction in error cor-
rection resources [114, 115]. Furthermore, for successive
gate applications, the gate error due to depolarization
is approximately linear in the gate count, which we ex-
pect for t � T1, see Fig. 1(c). The gate error reduction
for large gate counts is important for noisy, intermediate-
scale quantum (NISQ) applications. These improvements
are significant given the constraints we have imposed on
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the gates, and do not represent a fundamental limit to
the optimization methods we have employed.

V. ROBUSTNESS TO STATIC PARAMETER
UNCERTAINTY

We have formulated the QOC problem as an open-loop
optimization problem, i.e., we do not incorporate feed-
back from the experiment into the optimization. How-
ever, the precise device parameters will deviate from the
parameters we use in optimization, leading to poor exper-
imental performance. We combat errors of this form us-
ing robust control techniques, making the state evolution
insensitive to parameter uncertainty. As an example, we
mitigate errors arising from the drift and finite measure-
ment precision of the qubit frequency, which modifies the
fluxonium Hamiltonian (3) by fq → fq+δfq. We consider
three robust control techniques to accomplish this task:
a sampling method, an unscented sampling method, and
a derivative method.

A. Sampling Method

The sampling method incentivizes the optimizer to en-
sure that multiple copies of a state, each evolving with
a distinct value of the uncertain parameter, achieve the
same target state. Variants of this technique have been
proposed in the context of QOC [3, 20, 42, 65]. For
each initial state, we add two sample states |ψ±〉 to the
augmented state (5). The discrete dynamics function is
modified so the sample states evolve under the fluxonium
Hamiltonian (3) with fq → fq ± σfq for a fixed standard
deviation σfq of the qubit frequency, acting as a hyperpa-
rameter. We penalize the infidelities of the sample states
with respect to the target state by adding a cost func-

tion to the objective of the form
∑
k,± bk(1−| 〈ψT |ψ±k 〉|

2
)

where bk is a constant we supply. For this method,
the standard orthonormal basis states are an insuffi-
cient choice for the initial states. As an example, a
Z/2 gate achieved by idling at the flux frustration point
(ak = 0 ∀ k) will be robust to qubit frequency detunings
for the initial states |0〉 or |1〉 because the infidelity metric
is insensitive to global phases, but this gate will not be ro-
bust for any other initial states. Therefore, we choose the
four initial states {|0〉 , |1〉 , (|0〉+i |1〉)/

√
2, (|0〉−|1〉)/

√
2}

[116], whose outer products span the operators on the
Hilbert space, and we refer to them as the operator ba-
sis.

B. Unscented Sampling Method

Whereas the sampling method penalizes the deviations
of the sample states from the target state, the unscented
sampling method penalizes the deviations of the sam-
ple states from the nominal state [68–70]. Accordingly,

the cost function we add to the objective takes the form∑
k,j ck(ψjk − ψk)T (ψjk − ψk), where ck is a constant we

supply, ψk is the evolved initial state (nominal state), and

ψjk is a sample state that evolves under a modified Hamil-
tonian similar to that in the sampling method. The sam-
ple states are chosen to encode a unimodal distribution
over the 2n elements of the nominal state, modeling the
uncertainty in the state as a result of the uncertainty in
the parameter. We use the unscented transform [71, 72]
to accurately propagate the mean and covariance of this
distribution between time steps, or equivalently, through
the transformation of the TDSE (1). Unlike the sam-
pling method, the cost function for the unscented sam-
pling method is sensitive to global phases. Accordingly,
we do not observe a performance increase when using
more than one initial state. A detailed procedure for the
unscented transformation is given in Appendix B.

C. Derivative Method

The derivative method penalizes the sensitivity of the
state to the uncertain parameter, which is encoded in the
lth-order state derivative |∂lfqψ〉 ≡ ∂lfq |ψ〉. In the mth-

order derivative method, we append all state derivatives
of order 1, . . . ,m to the augmented state (5) for each
initial state. We obtain the state derivatives at each time
step by performing forward-mode differentiation on the
TDSE (1). For example, the dynamics for the 1st-order
derivative method are:

i~
d

dt
|ψ〉 = H |ψ〉 , (8)

i~
d

dt

∣∣∂fqψ〉 = H
∣∣∂fqψ〉+ (∂fqH) |ψ〉 . (9)

We integrate the coupled ODEs with exponential integra-
tors, see Appendix C. While the state |ψ〉 has unit norm,
the state derivatives |∂lfqψ〉 need not, as is evident from

the non-unitary dynamics (9). We penalize the norms of
the isomorphism-equivalent state derivatives in the Qk
term of the objective by setting the corresponding ele-
ments of the target augmented state to zero, see (6a).
Intuitively, this corresponds to penalizing the sensitivity
of each state element to the uncertain parameter. As was
the case for the unscented sampling method, we do not
observe a performance increase when using more than
one initial state for the derivative method. We present
the runtimes of our implementations of the three robust
control methods in Appendix D.

D. Comparison

We examine the gate errors due to a static qubit fre-
quency detuning for the Z/2 gates obtained with the ro-
bust control techniques and the analytic Z/2 gate. To
compute the gate error, an initial state is evolved under
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FIG. 2. (a) Flux pulses for Z/2 gates robust to qubit frequency detunings constructed with the analytic (A),
sampling (S), unscented sampling (U), and the 1st- and 2nd-order derivative methods (D1, D2). The flux pulses

shown for the sampling, unscented sampling, and derivative methods are optimized for twice the gate time of the
analytic gate. (b) Single-gate error at a one-percent qubit frequency detuning as a function of the gate time. Missing
data points represent gates with a gate error greater than 5 · 10−5. (c) Single-gate error as a function of the qubit

frequency detuning. The gate errors for the analytic and 1st-order derivative methods are shown for gate times which
are multiples of 1/4fq ∼ 18ns. The gate errors for the two methods are indistinguishable at the gate time 18ns.

the fluxonium Hamiltonian (3) two separate times with
the transformations fq → fq ± δfq at the stated qubit
frequency detuning δfq. The reported gate error is the
infidelity of the evolved state and the target state aver-
aged over the two transformations for each of 1000 pseu-
dorandomly generated initial states. We set σfq/fq = 1%
for the sampling and unscented sampling methods.

The analytic gate corresponds to idling at the flux frus-
tration point ak = 0 ∀ k, see Fig. 2(a). Its gate time
1/4fq ∼ 18ns is the shortest possible for a Z/2 gate on the
device. The gate’s erroneous rotation angle 2πδfq/4fq is
linear in the qubit frequency detuning, resulting in a gate
error that is quadratic in the detuning. At a one-percent
detuning |δfq/fq| = 1%, the gate error is ∼ 4.7 · 10−5,
which is sufficient for quantum error correction.

For the sampling method, the gate error at a one-
percent qubit frequency detuning does not decrease sub-
stantially over the range of gate times, and begins to in-
crease above 5 · 10−5 for gate times greater than ∼ 50ns,
see Fig. 2(b). Optimization results for the sampling
method reveal that it is typically able to achieve a high
fidelity for one sample |ψ±〉, but not the other |ψ∓〉,
indicating that it is difficult for the optimizer to make
progress on both objectives. For the unscented sampling
method, the gate error at a one-percent detuning does
not decrease substantially over the gate times, but it
does reach a minimum of ∼ 3.9 · 10−5 near fractions of
the Larmor period: 2/4fq ∼ 36ns, 3/4fq ∼ 54ns, and
4/4fq ∼ 72ns.

The two derivative methods converge on qualitatively
similar flux pulses that idle near the flux frustration point
and use fast triangle movements at the boundaries, simi-
lar to the flux pulse produced by the unscented sampling

method. For both derivative methods, the gate error at
a one-percent qubit frequency detuning decreases super-
linearly in the gate time. For the 1st-order method, the
gate error at a one-percent detuning reaches 10−7 at the
Larmor period 1/fq ∼ 72ns, see Fig. 2(c). This result
mimics the ability of composite pulses to mitigate param-
eter uncertainty errors to arbitrary order with sufficiently
many pulses [55]. It is difficult to choose an appropriate
composite pulse for the problem studied here due to our
Hamiltonian and experimental constraints. A compari-
son between composite pulses and numerical techniques
could be an interesting topic for future study.

Furthermore, the ability to perform Z-type gates in
any given time is critical for synchronizing phases in
multi-qubit experiments, where the qubits have distinct
frequencies. Notably, the analytic gate studied here can-
not be extended to gate times other than 1/4fq. We
can find gates using the numerical methods at all gate
times at and above 1/4fq, see Fig. 2(b). These numer-
ical methods offer an effective scheme for synchronizing
multi-qubit experiments.

VI. ROBUSTNESS TO TIME-DEPENDENT
PARAMETER UNCERTAINTY

An additional source of experimental error arises from
time-dependent parameter uncertainty. For many flux-
biased and inductively-coupled superconducting circuit
elements, magnetic flux noise is the dominant source of
coherent errors [117–120]. Flux noise modifies the fluxo-
nium Hamiltonian (3) by a(t)→ a(t) + δa(t) where δa(t)
is the flux noise. The spectral density of flux noise is ob-
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FIG. 3. (a) Flux pulses for X/2 gates robust to flux noise constructed with the analytic (A), sampling (S),
unscented sampling (U), and the 1st- and 2nd-order derivative methods (D1, D2). (b) Cumulative gate error due to

1/f flux noise for successive gate applications. The cumulative gate errors for the sampling, unscented sampling,
and the derivative methods are indistinguishable.

served to follow a 1/f distribution [73, 117–122], so the
noise is dominated by low-frequency components. The
analytic gate considered here takes advantage of the low-
frequency characteristic and treats the noise as quasi-
static, performing a generalization of the spin-echo tech-
nique to compensate for erroneous drift [123, 124].

We modify the robust control techniques presented in
the previous section to combat 1/f flux noise. The un-
scented sampling method is modified so that the sample
states are subject to 1/f flux noise. The noise is gen-
erated by filtering white noise sampled from a standard
normal distribution with a finite impulse response filter
[125]. The noise is then scaled by the flux noise amplitude
of our device AΦ = 5.21µΦ0 =⇒ σa = 2.5 · 10−5GHz.
In principle, we could modify the sampling method sim-
ilarly; however, we choose to subject the sample states
to static noise a(t) → a(t) ± σa for comparison. The
derivative methods require no algorithmic modification
from the static case, but the TDSE is now differentiated
with respect to a(t) instead of fq as in (9).

We analyze the gate errors due to 1/f flux noise for
the X/2 gates constructed with the robust control tech-
niques and the analytic X/2 gate. To compute the gate
error, we evolve an initial state under the fluxonium
Hamiltonian (3) where the optimized flux is modified
a(t) → a(t) + δa(t). We generate the flux noise as we
described for the unscented sampling method. The re-
ported gate error is the infidelity averaged over 1000
pseudorandomly generated initial states, each of which
is subject to a distinct pseudorandomly generated flux
noise instance. To observe the effect of interfering coher-
ent errors, we simulate successive applications of the gate
constructed by each method; we compute the cumulative
gate error after each application, see Fig. 3. Both the
analytic and numerical gates yield single-gate errors suf-
ficient for quantum error correction. Despite converging

on qualitatively different solutions, the numerical gates
perform similarly in the concatenated gate application
comparison. Their gate errors after 200 gate applications
∼ 11µs are two orders of magnitude less than the gate
error produced by the analytic gate. 1/f flux noise is a
significant source of coherent errors in NISQ applications,
and these numerical techniques offer effective avenues to
mitigate it.

VII. CONCLUSION

We have introduced state-of-the-art trajectory opti-
mization techniques in the context of quantum optimal
control, enabling us to achieve tight tolerances for multi-
ple constraints on the control fields and quantum states.
Using these capabilities, we have mitigated decoherence
and achieved robustness to parameter uncertainty er-
rors on a superconducting fluxonium qubit. We have
proposed a scheme for suppressing depolarization with
time-optimal control and the integrated depolarization
rate model. The computational complexity of evaluat-
ing this model is independent of the dimension of the
Hilbert space, enabling inexpensive optimization on high-
dimensional quantum systems. We have also proposed
the derivative method for robust control which achieves
superlinear gate error reductions in the gate time for
the static parameter uncertainty problem we studied.
We have shown that the derivative, sampling, and un-
scented sampling methods can mitigate 1/f flux noise
errors – which dominate coherent errors for flux con-
trolled qubits. These robust control techniques can be
applied to any Hamiltonian, allowing experimentalists
in all domains to engineer robust operations on their
quantum systems. Furthermore, they can be used to
achieve the low gate errors required for fault-tolerant
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quantum computing applications. Our implementations
of the techniques described in this work are available at
https://github.com/SchusterLab/rbqoc.
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Appendix A: Depolarization

We comment on the depolarization metrics and then
give our procedure for integrating the Lindblad master
equation. The integrated depolarization rate and the
gate error due to depolarization are compared in Table I
for the numerical experiment described in Sec. IV. The
ratio of the value obtained on the metric with the ana-
lytic technique to the value obtained with the numerical
technique is similar across the two metrics.

Gate
D1A D1N D1A

D1N

GEA GEN GEA

GEN(10−5) (10−5) (10−5) (10−5)
Z/2 5.745 1.149 5.000 0.888 0.185 4.791
Y/2 5.253 1.157 4.540 0.770 0.186 4.132
X/2 16.251 2.660 6.109 2.674 0.432 6.200

TABLE I. Single-gate integrated depolarization rate
(D1) and single-gate error due to depolarization (GE).
Values are reported for the analytic (A) and numerical

(N) gates.

We employ the Lindblad master equation to compute
the gate error due to depolarization. This equation takes
the form:

d

dt
ρ = − i

~
[H, ρ] +

∑
i

γi(LiρL
†
i −

1

2
{L†iLi, ρ}), (A1)

For depolarization, γ± = T−1
± , L± = σ± ≡ (σx ± iσy)/2.

Our device operates in the regime where hf � kBT such
that T+ = T− = 2T1, where T1 is obtained at each time
step from the spline shown in Fig. 1(b). We obtain the
T1 values in this spline by driving the qubit at the de-
sired flux bias and monitoring the resultant decay. For
more details on these measurements, consult Ref. [73].
Because T1 depends on the flux, so do the decay rates γ±.

Integrating the master equation with time-dependent de-
cay rates provides a heuristic for how gates might perform
in the experiment. This procedure may not be strictly
correct when decay rates change significantly on the time
scale of the relaxation time, which is the regime we are
operating in. Standard derivations of the Lindblad mas-
ter equation do not account for time-dependent decay
rates [132]. A more thorough treatment of this regime
in future work would unlock new insights for quantum
computing platforms where decoherence is strongly de-
pendent on the control parameters.

In order to use exponential integrators, we employ the
vector (Choi-Jamiolkowski) isomorphism [133],

d

dt
vec(ρ) = L̂ vec(ρ), (A2)

L̂ = −i(11⊗H −HT ⊗ 11)

+
∑
i

γi(L
∗
i ⊗ Li −

1

2
(11⊗ L†iLi − L

T
i L
∗
i ⊗ 11)),

(A3)

where ρ =
∑
i,j αij |i〉 〈j| and vec(ρ) =

∑
i,j αij |i〉 ⊗ |j〉.

Because the flux is constant between time steps due to
our numerical discretization, the Hamiltonian and decay
rates are also constant between time steps. Therefore,
the exact solution to (A2) is,

vec(ρk+1) = exp(∆tkL̂k)vec(ρk). (A4)

The vector isomorphism transforms (n × n) × (n × n)
matrix-matrix multiplications to (n2 × n2)× n2 matrix-
vector multiplications. For small n, we find that it is
faster to use an exponential integrator on the vectorized
equation than to perform Runge-Kutta on the unvector-
ized equation. The latter requires decreasing the interval
∆tk to maintain accuracy, resulting in more time steps.

Appendix B: Unscented Sampling Method

In this section, we outline the full unscented sampling
procedure. We consider a state ψ ∈ R2n, an uncer-
tain set of parameters λ ∈ Rd, and discrete dynamics
ψk+1 = f(ψk, λk). The nominal initial state is given by
ψ̄1 with an associated covariance matrix P1 ∈ S2n

++ which
describes the uncertainty in the initial state. We use
the notation Sm++ to denote the set of real, symmetric,
and positive-definite m × m matrices. By the positive-
definite requirement, P1 must be non-zero even if the
state-preparation error is negligible. The uncertain pa-
rameter has zero-mean and its distribution is given by
the covariance matrix Lk ∈ Sd++ at time step k. The
zero-mean assumption is convenient for deriving the up-
date procedure. A non-zero mean can be encoded in the
discrete dynamics function f(ψk, λk).

The initial 4n + 2d sample states and initial 4n + 2d
uncertain parameters are sampled from the initial distri-

https://github.com/SchusterLab/rbqoc
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butions,

(
ψj1
λj1

)
=

(
ψ̄1

0

)
± β

√(
P1 0
0 L1

) j

. (B1)

Here, β is a hyperparameter that controls the spacing of
the covariance contour. The (±) is understood to take
(+) for j ∈ {1, . . . , 2n + d} and (−) for j ∈ {2n + d +
1, . . . , 4n + 2d}. We use the Cholesky factorization to
compute the square root of the joint covariance matrix,
though other methods such as the principal square root
may be employed. The superscript on the matrix square
root indicates the jth column (mod 2n+ d) of the lower
triangular Cholesky factor. Then, the sample states are
normalized,

ψj1 →
ψj1√
ψj1

T
ψj1

. (B2)

The sample states are propagated to the next time step,

ψj2 = f(ψj1, λ
j
1). (B3)

The mean and covariance of the sample states are com-
puted,

ψ̄2 =
1

4n+ 2d

4n+2d∑
j=1

ψj2, (B4)

P2 =
1

2β2

4n+2d∑
j=1

(ψj2 − ψ̄2)(ψj2 − ψ̄2)T . (B5)

The sample states are then resampled and propagated
to the next time step using (B1), (B2), and (B3). Our
choice of sample states (sigma points) follows equation
11 of Ref. [71]. Prescriptions that require fewer sigma
points exist [134].

Appendix C: Derivative Method

Here, we outline how to efficiently integrate the dy-
namics for the derivative method using exponential in-
tegrators. General exponential integrators break the dy-
namics into a linear term and a non-linear term. For
example, the dynamics for the first state derivative are,

d

dt
|∂λψ〉 = − i

~
H |∂λψ〉 −

i

~
(∂λH) |ψ〉 . (C1)

The linear term is L = − i
~H and the non-linear term

is N = − i
~ (∂λH) |ψ〉. With piecewise-constant controls,

the exact solution to (C1) is,

|∂λψk+1〉 = exp(∆tkLk) |∂λψk〉

+

∫ ∆tk

0

exp
(

(∆tk − t
′
)Lk

)
N(tk + t

′
)dt
′
.

(C2)
General exponential integrators proceed by breaking the
integral in (C2) into a discrete sum, similar to the proce-
dure for Runge-Kutta schemes. We use a simple approx-
imation known as the Lawson-Euler method [82],

|∂λψk+1〉 ≈ exp(∆tkLk) |∂λψk〉
+ exp(∆tkLk)Nk∆tk.

(C3)

This method provides a good tradeoff between accuracy
and efficiency, requiring one unique matrix exponential
computation per stage. Integration accuracy for the state
derivatives is not of the utmost importance because they
are used in the robustness cost function – as opposed to
the states themselves which are experimental parameters
that must be realized with high accuracy.

Appendix D: Computational Performance

In this section we provide runtimes for our optimiza-
tions. The runtimes for the base optimization in Sec.
III, the depolarization optimization in Sec. IV, and the
robust optimizations in Sec. V are presented in Table
II for a Z/2 gate at gate times which are multiples of
1/4fq ∼ 18ns. We performed optimizations on a sin-
gle core of an AMD Ryzen Threadripper 3970X 32-Core
Processor @ 3.7 GHz. Future work will parallelize the
robustness methods using GPUs [17], which will enable
fast optimizations on high-dimensional Hilbert spaces.

Method
tN (ns)

18 36 72

Base 0.155± 0.008 7.0± 0.4 15.9± 0.8
Depol. 1.69± 0.08 - -

S 1.77± 0.09 48± 2 280± 10
U 75± 4 340± 20 400± 20
D1 6.1± 0.3 27± 1 65± 3
D2 15.7± 0.8 17.3± 0.9 54± 3

TABLE II. Average runtimes in seconds for Z/2
optimizations using the base, depolarization, sampling
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