
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020 1

Scalable Cooperative Transport of Cable-Suspended
Loads with UAVs using

Distributed Trajectory Optimization
Brian E. Jackson1∗, Taylor A. Howell1∗, Kunal Shah1, Mac Schwager2, and Zachary Manchester2

Abstract—Most approaches to multi-robot control either rely
on local decentralized control policies that scale well in the
number of agents, or on centralized methods that can handle
constraints and produce rich system-level behavior, but are typi-
cally computationally expensive and scale poorly in the number of
agents, relegating them to offline planning. This work presents a
scalable approach that uses distributed trajectory optimization
to parallelize computation over a group of computationally-
limited agents while handling general nonlinear dynamics and
non-convex constraints. The approach, including near-real-time
onboard trajectory generation, is demonstrated in hardware on
a cable-suspended load problem with a team of quadrotors
automatically reconfiguring to transport a heavy load through
a doorway.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Optimization and Optimal Control

I. INTRODUCTION

MANY robotic tasks can be accomplished by a single
agent, but often there are benefits to employing a

team of robots. For example, transporting a heavy load can
be accomplished by deploying a single powerful, expensive,
and potentially dangerous aerial vehicle, or by deploying a
group of smaller aerial vehicles that cooperatively transport
the load. The potential benefits of a team approach, namely
reduced cost, increased versatility, safety, and deployability of
the system, are important but come at the cost of increased
complexity. Motion planning for a single robot is already
a challenging task, and coordinating a group of agents to
cooperatively accomplish a task can be significantly more com-
plicated due to increased degrees of freedom, more constraints,
and the requirement to reason about the effects of distributed
computation and communication.
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Fig. 1: Hardware experiment with a team of 3 quadrotors
carrying a heavy load that a single quadrotor cannot lift. The
team must reconfigure to proceed through the narrow doorway.

Approaches for multi-agent motion planning range from
decentralized methods that consider local interactions of the
agents to centralized methods that globally coordinate a system
of agents. The decentralized approach has many advantages,
such as robustness to agent removal or failure, scalability, com-
putational efficiency and, possibly, reduced communication re-
quirements among the network of agents. While decentralized
approaches can achieve useful and interesting global behavior
[1]–[5], they have important limitations. Often, they are limited
to simple, homogeneous dynamics, such as single or double
integrators. It is also difficult to enforce constraints, either at
the agent or the system level.

Centralized approaches, in contrast, are able to reason about
general dynamics and constraints. However, they typically
necessitate increased computation and communication, and
require solving large optimization problems. Centralized meth-
ods are, therefore, typically run offline. Additionally, since
the optimization problems involved often exhibit cubic or
exponential scaling of computation time with the number of
decision variables, centralized approaches tend to scale poorly
for systems with a large number of agents. Both centralized
and decentralized approaches have been used in a large variety
of fields, from controlling swarms of microscale robots [6], to
modeling human crowds [7], to planning motion for teams of
aerial vehicles transporting heavy loads.
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Aerial vehicles have been used to transport slung loads since
at least the 1960s [8] for applications including: delivering
fire retardant to fight forest fires, carrying beams for civil
infrastructure projects, moving harvested trees, carrying mili-
tary vehicles, and transporting large animals. Today, quadrotors
have become a standard testbed for such aerial vehicle appli-
cations, and there is an extensive literature on utilizing a single
quadrotor to carry a slung load [9]–[12].

Teams of quadrotors have also been explored, oftentimes
making significant simplifying assumptions. The most com-
mon simplification, and one also taken in the current work, is
to model the cables as massless rigid links [13]–[17]. More
recent approaches have relaxed this assumption by modeling
the system as a hybrid dynamical system and then solving the
problem as a mixed-integer program that takes nearly an hour
to solve [10]. While most assume a simple point mass for
the load, some also consider extensions to rigid bodies [13],
[17]. A distributed controller for a group of quadrotors rigidly
attached to a load, assuming no communication between agents
[18] has also been developed.

Beyond the suspended-load problem, collision-free trajecto-
ries for a swarm of quadrotors can be calculated using sequen-
tial convex programming, but the computational complexity
scales exponentialy with the number of agents [19]. Other
notable examples of coordinated teams of quadrotors include
throwing and catching a ball with quadrotors connected by
a net [20], performing a treasure hunt [21], and manipulating
flexible payloads [22]. Distributed approaches for motion plan-
ning have been proposed using alternating direction method of
multipliers (ADMM) and mixed integer programs [23]–[26],
but they utilize simplified dynamics or constraints, and don’t
consider interaction between agents (e.g., forces).

In this work, we present a scalable distributed approach
for obtaining a solution to the centralized “batch” motion-
planning problem for a team of quadrotors carrying a cable-
suspended load and demonstrate the algorithm in hardware
(Fig. 1). This approach combines the generality of centralized
methods, while approaching near real-time performance that
would be impossible without distributed, parallel computation.
We formulate a trajectory optimization problem and consider
the nonlinear rigid body dynamics of the quadrotors and non-
convex collision and obstacle avoidance constraints. We use
the trajectory optimization solver ALTRO [27] to find the state
and control trajectories for the system of agents. To make the
problem scalable in the number of agents, we take an intuitive
approach of decomposing the problem by agent and solving
the resulting subproblems in parallel. The result is a substantial
reduction in solution time and superior scaling as the number
of agents is increased. The novelty of this approach lies in
the use of a constrained trajectory optimization solver (in our
case, ALTRO) to solve a sequence of smaller constrained
problems, that include optimizing interactions (i.e., forces)
between agents, instead of solving a single, large trajectory
optimization problem.

The remainder of this paper is organized as follows: Section
II formulates the cable-suspended-load problem as a trajectory
optimization problem. Section III presents a decomposition

scheme and an algorithm for solving the batch problem in
parallel among agents. Section IV contains simulation results
and Section V contains details of the hardware experiments.
Finally, we conclude with a discussion of the algorithm and
results in Section VI.

II. BATCH PROBLEM

We formulate a trajectory optimization problem for the team
cable-suspended load problem with L quadrotors attached to
a point-mass load. The suspension cables are assumed to pass
through the center of mass of each quadrotor, and are modeled
as massless rigid links. The dynamics model formulation of
the system is critical for achieving good performance using
trajectory optimization, and is described in detail in Section
II-A. Section II-B then describes the optimization problem.

A. Dynamics
1) Quadrotor Model with Quaternions: The quadrotor dy-

namics presented in [28] are modified to use quaternions for
angular representation and incorporate the force generated by
a suspension cable:
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where r ∈ R3 is the position, q is a unit quaternion, R(q) ∈

SO(3) is a quaternion-dependent rotation matrix from body
frame to world frame, v ∈ R3 is the linear velocity in the
world frame, ω ∈ R3 is the angular velocity in the body frame,
x ∈ R13 is the state vector, u ∈ R5 is the control vector with
the last component being the magnitude of the cable force,
x` ∈ R6 is the state vector of the load (defined below), g ∈

R3 is the gravity vector, and mi ∈ R is the mass of the i-
th quadrotor, J ∈ S3 is the moment of inertia tensor, q2 ⊗ q1
denotes quaternion multiplication, and ω̂ denotes a quaternion
with zero scalar part, and ω vector part. Quaternions are used to
easily allow for large angular displacements and extensions to
more aggressive maneuvers. The forces and torques F, τ ∈ R3

in the body frame are
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where kf , km are motor constants, dmotor is the distance
between motors, and u1∶4 are motor thrusts. Forces from the
cables, modeled in the world frame, are calculated as:

Fc(γ, x, x
`
) = γ

r` − r

∥r` − r∥ 2

, (4)

where γ ∈ R (u5 for each quadrotor) is the magnitude of the
tension in the cable and r` is the three-dimensional position
of the load.
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2) Load: The dynamics of a load being transported by L
quadrotors are:

ẋ` = [
ṙ`

v̇`
] = [

v`

g + 1
m`F

`(x`, u`, x1, ..., xL)
]

= f `(x`, u`;x1, . . . , xL)

(5)

where r` is the three-dimensional position, v` is the linear
velocity in the world frame, m` is the mass of the load, x` ∈ R6

is the state vector, u` ∈ RL is the force acting on the load (not
a direct control input), xi is the state vector of quadrotor i,
and

F `
(x`, u`, x1, ..., xL) = −

L

∑
i=1

Fc(u
`
i , x

i, x`). (6)

B. Optimization Problem

The batch problem is formulated by concatenating the states
and controls of L quadrotors and the load:
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where IL = {1, . . . , L} are the indices of the quadrotors and
IA = {1, . . . , L, `} are the indices of all the agents (including
the load). We can pose the team cable-suspended-load problem
as a single trajectory optimization problem:

minimize
X,U
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) +
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u`k ≥ 0, (8h)
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where X = [x0, . . . , xN ] is a state trajectory of length N ,
U = [u0, . . . , uN−1] is a control trajectory of length N − 1,
X = [X1, . . . ,XL,X`] andU = [U1, . . . , UL, U `] are sets of
trajectories for the system, pi ∈ R2 is the two-dimensional
position of the quadrotor or load (discarding height), x(0) and
x(tf) are initial and final conditions, d is a scalar dimension
(e.g., quadrotor radius), ∆t is the time step duration, and all
constraints apply at each time steps k.

The constraints are, from top to bottom: discrete quadrotor
dynamics (8b) from (1), discrete load dynamics (8c) from
(5), initial conditions (8d), final condition for the load (8e),
workspace constraints (i.e. floor and ceiling constraints) (8f),
quadrotor motor constraints (8g), positive cable tension (8h),
equal tension force on quadrotor and load (8i), cable length
(8j), collision avoidance (8k), and obstacle avoidance for the
quadrotors (8l) and load (8m). The obstacles are modeled as
cylinders of infinite height, which reduces collision checking
to a plane. These simple constraints can be combined to
form narrow doorways or slots and enables fast, analytical
collision checking. The self-collision constraints also model
the quadrotors as cylinders of infinite height to help prevent
unmodeled prop wash effects from disturbing the system. The
objective for each agent was a quadratic cost, having the form:
(xk − xref)

TQk(xk − xref) and (uk − uref)
TRk(uk − uref) for

the states and controls, respectively, at each time step k.
We found it beneficial to both initialize the solver and

include in the objective state and control references: xref,
uref, based on trim conditions that produce static hovering
of the system. These conditions were found using trajectory
optimization by setting the initial and final positions and
velocities of the system to be the same. Large costs were used
for all states except the orientation, which had a relatively
small cost. Solving this problem, the system naturally finds an
equilibrium state where the quadrotors “lean away” from the
load in order to create thrust in a direction that compensates for
the tension in the cable (this behavior can be seen in Fig. 1).
These quadrotor orientations are then used for the initial and
final orientations and the trim controls are used as reference
controls. Regularizing the control values to these trim controls,
rather than to zero, had a significant effect on the convergence
of the optimization. This hover condition was also used as the
initial control trajectory provided to ALTRO.

III. DISTRIBUTED FORMULATION

We present a scalable approach for solving (8a) by decom-
posing the problem by quadrotor. Of the given constraints,
only the collision avoidance constraint (8k) directly couples
the states of the quadrotors (i.e. only the collision avoidance
constraints are functions of the states of different quadrotors).
The quadrotors’ dynamics are only indirectly coupled (through
the load) via the cable constraints (8i) and (8j). The objective,
by design, is separable by agent, i.e. there is no cost coupling
between the state and controls of the quadrotors or the quadro-
tors and load.

From these observations, a decomposition is quite apparent:
solve a trajectory optimization problem for each quadrotor
independently, treating all other quadrotor and load trajectories
as static. After each quadrotor has optimized independently,
the updated trajectories are collected and used to optimize the
load trajectory. The updated load trajectory, along with the
updated quadrotor trajectories, are then communicated to each
quadrotor and the process is repeated.

While this update for the load trajectory can be considered
a consensus update, it is distinct from approaches like ADMM
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that perform primal updates over agents followed by a collec-
tive dual update. In our approach, each agent performs primal
and dual updates until convergence before communicating. In
practice, we found this approach to converge faster and more
reliably. Our procedure is summarized in Algorithm 1.

Algorithm 1 Distributed Trajectory Optimization

1: function DIST-TRAJ-OPT(X0,U0, tol.)
2: X̃← X0, Ũ← U0

3: while MAX-VIOLATION(X̃, Ũ) > tol. do
4: for i = 1, . . . , L do in parallel
5: Xi, U i ← SOLVE-QUAD(Xi, U i; X̃, Ũ)

6: send Xi, U i to central agent
7: end for
8: X`, U ` ← SOLVE-LOAD(X`, U `; X̃, Ũ)

9: send X̃, Ũ to all agents
10: end while
11: return X̃, Ũ
12: end function

The “central” agent (the one that computes the load trajectory)
is, in practice, randomly assigned before the solve to one of
the quadrotors, and is computed in a separate process with a
separate memory space.

As with most nonlinear optimization algorithms, the perfor-
mance of our algorithm improves dramatically with a good
initial guess. We designed our guess by solving an initial set
of trajectory optimization problems for each quadrotor and the
load separately, without any of the system-level constraints
(i.e., self-collision (8k) or cable constraints (8i) and (8j)).
Since these problems are completely de-coupled, they can
be solved in parallel. Getting these initial trajectories to be
sufficiently close to the final solution was key in getting the
fast convergence demonstrated in the results that follow. The
time to solve these initial trajectory optimization problems
is included in the overall solution time. These optimizations
were initialized with the same trim conditions given to the
batch problem, described previously. However, for these initial
optimization problems, the initial control and control reference
for the cable tension was set to zero, since the cable constraints
weren’t considered during these problems. This resulted in
slightly different initializations for the batch and distributed
algorithms.

IV. SIMULATIONS

A. Scenarios

Three scenarios using the batch problem formulation are
considered: 1) point-to-point transfer of a load using L quadro-
tors (see Fig. 2), 2) a load transfer through a narrow slot,
followed by a narrow doorway, which requires the quadrotors
to spread apart and then gather together (see Fig. 4), and 3)
a load transfer through a narrow doorway using 3 quadrotors
(see Fig. 6). All scenarios solve a 10 s trajectory. We assume
perfect knowledge of the obstacles.

In the first and second scenarios, the stage costs were
identical for all time steps. The costs for the second and third

scenarios were identical; however, in the third scenario, the
cost was altered at the middle time step km = (N − 1)/2 to
encourage the quadrotors to “line up” when passing through
the door. This stage cost simply placed a high cost (about
equal in magnitude to the cost at the terminal time step)
for deviations from an intermediate configuration for passing
through the doorway. The desired positions were calculated
directly from the initial position of the load and the location of
the center of the door. The load was assumed to be at the center
of the door, at the same height it started. The quadrotors are
then evenly distributed on an arc of α degrees. This encourages
the quadrotors to “fan” out around the load, see Fig. 1).

The dimensions of the quadrotor, load cables, and doorway
were based on the actual values for the hardware experiment
(see Section V). In simulation, the slot and doorways are
modeled using horizontally and vertically oriented cylinder
obstacle constraints. The doorway in Fig. 6 was constructed
from two cylinders 2 m apart with a radius of 0.5 m, 0.6 m
smaller than the actual doorway (1.0 m vs 1.6 m). The slot
scenario is similarly dimensioned. To encourage the quadro-
tors to get in position before reaching the door, we made
the doorway artificially “deep” by adding a second set of
cylinders. The width of the quadrotor was set to 0.55 m. This
scenario is challenging since, although a single quadrotor can
fit through the doorway easily, two cannot. The quadrotors
must coordinate a way to carry the load through the doorway
while passing through one at a time.

B. Results

We define two methods for solving (8a):
● Batch - solve directly
● Parallel - solve using Algorithm 1 with multiple cores on

the same or distributed machines
All trajectory optimization sub-problems were solved us-

ing ALTRO to a maximum constraint violation of 1e-3
and performed either on a desktop computer with an AMD
Ryzen Threadripper 2950x processor and 16GB RAM or
an ODROID-XU4 microcomputer with a 32-bit Samsung
Exynos5 Octa ARM Cortex-A15 2Ghz processor and 2GB of
RAM onboard the quadrotors. Algorithm 1 is implemented in
the Julia programming language, uses the ALTRO trajectory
optimization solver [27], and leverages the language’s conve-
nient methods for working with distributed computation. The
solver hyper-parameters were tuned to each algorithm (batch
vs. distributed) but kept the same across all scenarios.

Fig. 3 contains the timing results for the first scenario with
L ranging from 3 to 15 quadrotors, clearly demonstrating the
scalability of Algorithm 1 compared to explicitly solving the
batch problem (8a).

When solving the second scenario, the batch version took
4.0 seconds to solve, whereas the distributed version took
only 2.0 seconds. To test sensitivity of the algorithm to initial
conditions, we varied the x position by ±1.5m in the x and
y direction (+x is closer to the goal, and +z is vertical). The
distributed version could solve problems within ±0.5m in x
and ±1.5m in y. The batch version solved problems within
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Fig. 2: Simulation of teams with 3, 8, and 15 quadrotors (left,
center, right) in final configuration after a point-to-point load
transfer. To maintain the final system configuration, quadrotors
orient to produce thrust that maintains hover despite a force
resulting from the load.

4 6 8 10 12 14

100

101

Number of lift agents

Ti
m

e
(s

) Batch
Parallel

Fig. 3: Timing result comparing batch and parallel algorithms
for a point-to-point load transfer using L quadrotors. The
parallel algorithm scales favorably compared to the batch
approach as the number of quadrotors is increased.

±1.5m in x and ±1.5m in y. The batch version can handle a
larger set of initial conditions since it jointly optimizes all of
the trajectories, so will naturally be more robust.

A sequence of frames from the doorway scenario is pre-
sented in Fig. 6, and the timing results for this scenario
are included in Table I. The last row in the table was
performed on the 3 ODROID-XU4 computers onboard the
quadrotors used in the hardware demonstration. One of the
quadrotors was used as the “central” agent, which used a
separate core for solving the load problem. Communication
between the computers was performed over WiFi. The cost
and constraint convergence is compared in Figures 5a and 5b,

Fig. 4: Slot scenario. The quadrotors have to automatically
reconfigure to pass through a narrow horizontal slot, followed
by a narrow doorway.

TABLE I: Runtime performance: Doorway Scenario

Computer Batch Parallel

Desktop 3.6 s 0.8 s
1 Quadrotor 28.7 s 5.4 s
3 Quadrotors - 5.7 s

respectively. The cost and constraint values for the parallel
solve were calculated by concatenating the current values for
the quadrotor and load trajectories. The distributed method
starts with a slightly higher initial cost and constraint violation
since the initial control trajectories assume zero force in the
cable (since the initial “presolve” neglects these constraints),
whereas the the initial guess for the batch method guesses
the force from the trim conditions. Both methods achieve
the same constraint satisfaction, but the distributed version
achieves a slightly lower cost of 3.6 versus 4.6 for the
batch version. While the resulting trajectories are similar,
the distributed version results in a seemingly “smoother”
trajectory, likely resulting from the guess provided by the “pre-
solve” phase. The implementation and all simulation results
are available at: https://github.com/RoboticExplorationLab/
TrajectoryOptimization.jl/tree/distributed team lift

V. HARDWARE RESULTS

Hardware experiments were conducted with three custom-
built quadrotor aerial robots based on the F330 frame [29]
in a 16.5 m × 6.5 m × 2.7 m motion capture room. Each
quadrotor (mi ≈ 1 kg) was equipped with a Pixfalcon, an open-
source flight controller board, along with the PX4 open-source
autopilot software (v1.7.3) to manage low-level control and
real-time state estimation. Furthermore, each quadrotor used an
ODROID-XU4 for high-level trajectory tracking and as bridge
to the the Robot Operating System (ROS) network to interface
with the Optitrack motion capture system. For this experiment,
the 10 s doorway scenario trajectories from Section IV were
computed offline using the onboard ODROID microcomputers
networked over WiFi (see Table I) and a simple velocity-based
trajectory tracking controller was used to follow the planned
trajectories.

Despite each quadrotor being unable to individually lift a 0.9
kg load, the team was able to successfully transport it together
through a 2.1 m × 1.6 m doorway. A sequence of frames
from the experiment is shown in Fig. 7 and accompanying
media. The experiments demonstrate that the method can be
implemented on a team of resource-constrained quadrotors,
making it practical for implementation onboard real systems.

VI. DISCUSSION

The current work presents a novel method for solving cable-
suspended load problems with quadrotors by posing them as
nonlinear trajectory optimization problems. By decomposing
the problem and solving each sub-problem in parallel, the
algorithm is fast enough to generate new trajectories in a few
seconds (faster than the time it takes to execute them). It also
scales well to large numbers of agents, and is lightweight

https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl/tree/distributed_team_lift
https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl/tree/distributed_team_lift
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Fig. 5: Convergence comparison of covergence of the cost function (a) and constraint violation (b) for the batch and distributed
solves. The distributed solve is broken into three phases: 1) Presolve, where an initial trajectory for each agent is obtained by
solving each problem independently, 2) Quads, where each quadrotor solves it’s own problem in parallel, and 3) Load, where
the trajectory for the load is solved using the updated quadrotor trajectories.

Fig. 6: Simulation results of a team with 3 quadrotors trans-
porting a load, that a single agent cannot lift, through a
doorway during a 10 s trajectory. The system reconfigures to
travel through the doorway and is shown at time instances t =
0.0, 2.4, 5.0, 7.6 10.0 s (left to right).

Fig. 7: Top view from hardware experiment with team of 3
quadrotors carrying a load through a doorway, progressing
through time (left to right). The team reconfigures from an
initial configuration that is wider than the doorway to a narrow
configuration with the quadrotors nearly inline.

enough to run on resource-constrained onboard computers that
can be carried by a quadrotor.

The presented approach has many advantages, including
speed, scalability, and the ability to change the resulting system
behaviors by modifying the constraints or objective of the

optimization problem. However, there are also some important
limitations worth noting: As with nearly all nonlinear opti-
mization problems, convergence is not guaranteed. The results
presented in Section V took careful tuning of the objective,
selection of solver hyperparameters, and good initializations
via trim conditions.

Our algorithm makes no assumptions about the dynamics of
the system, and demonstrate that sub-problems can be solved in
parallel across multiple agents to achieve dramatic reductions
in compute time compared to a naive “batch” formulation.
However, our approach benefits from the inherently sparse
coupling between agents in the cable-suspended load problem,
and it is unclear how well it will generalize to other multi-agent
problems with more complicated coupling.

Several directions for future work remain: A more careful
implementation, specifically focusing on parallelization of the
batch solve and communication between quadrotors, could
likely execute faster than real-time, enabling online re-planning
and model-predictive control, and be more robust than the
presented approach. Several extensions to the cable-suspended
load scenario are also possible within our approach, including
lifting rigid bodies instead of simple point masses, connecting
the cables to arbitrary points on the quadrotor, and allowing for
slack cables. While effective, the simplistic tracking controller
used in the hardware demonstrations can also be improved,
for example, by using the LQR feedback gains calculated
by the trajectory optimization solver in the online control
loop. Finally, generalizations to a variety of other multi-agent
systems with different dynamics and constraints are possible.
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