
AL-iLQR Tutorial

Brian Jackson

Abstract— Trajectory optimization is a powerful framework
for controlling complex dynamical systems. While many algo-
rithms for solving these difficult problems have been proposed,
methods based on differential dynamic programming (DDP)
have recently become very popular due to their straightforward
implementation and computational efficiency. While the original
DDP algorithm has no ability to deal with additional path
constraints, the use of DDP within an augmented Lagrangian
framework allows for a powerful and efficient framework
for solving constrained trajectory optimization problems. This
tutorial presents the algorithm in detail, based on experience
derived from implementing state-of-the-art implementations of
this algorithm, and aims to provide useful insight to help
those unfamiliar with DDP methods quickly understand the
algorithm and its extensions.

I. INTRODUCTION

Trajectory optimization is a powerful framework for con-
trolling complicated robotic systems. The value of trajectory
optimization lies primarily in its generality, allowing it to
be applied to a very broad class of dynamical systems.
Importantly, trajectory optimization can be applied to any
type of dynamical system whose dynamics are Markovian,
i.e.

ẋ = f(x, u) (1)

where ẋ ∈ Rn is the time derivative of the state x ∈ Rn and
u ∈ Rm are the controls.

While very general and powerful, trajectory optimization,
like all nearly all branches of optimal control, makes the
important assumption that the states of the system are known
exactly, i.e. that the system has full state feedback. Most
formulations of trajectory optimization assume a given initial
condition.

Trajectory optimization can be succinctly summarized by
the underlying optimization problem being solved:

minimize
x(t), u(t)

`(x(tf)) +

∫ tf

0

`(x(t), u(t))dt

subject to ẋ = f(x, u),

x(0) = x0,

g(x(t), u(t)) ≤ 0,

h(x(t), u(t)) = 0,

(2)

where x(t) and u(t) are the state and control trajectories
from time 0 to T . The dynamics constraint, which con-
strains derivatives of the optimization variables, is what sets
trajectory optimization apart from other general nonlinear
optimization problems. The field of trajectory optimiza-
tion is dedicated to finding efficient ways to solve these
differentially-constrained optimization problems.

The most common approach, and the one treated exclu-
sively in the current tutorial, is to discretize the problem
in time, dividing the time period of length T seconds into
N − 1 segments, typically of equal length of ∆t seconds.
This results in N discretization points, also referred to as
“knot” points, including the initial and final times. There
exist many methods for approximating the integrals in (2)
with discrete sums, as well as transforming the ordinary
differential equation for the dynamics (1) into a discrete
difference equation of the form:

xk+1 = f(xk, uk,∆t). (3)

The resulting discrete optimization problem can then be
written as:

minimize
x0:N , u0:N−1

`N (xN) +

N−1∑
k=0

`k(xk, uk,∆t)

subject to

xk+1 = f(xk, uk,∆t), k = 1, ..., N -1,
gk(xk, uk){<= 0},∀k,
hk(xk, uk) = 0,∀k,

(4)

There exist many methods for solving problems of the
form (4). These methods are typically divided into two
categories: “indirect” and “direct” methods. Direct methods
treat both the states and controls as decision variables and use
general-purpose nonlinear programming (NLP) solvers, such
as SNOPT or IPOPT. These methods typically transcribe
the optimization problem into something of the form given
in (4), often with varying methods for approximating the
continuous-time dynamics or unique formulations of problem
constraints. The most common method, direct collocation
(DIRCOL), uses Hermite-Simpson integration to integrate
both the cost and the dynamics, which is essentially a 3rd
order implicit Runge-Kutta integrator for the states and first-
order hold (i.e. linear interpolation) for the controls. These
methods benefit directly from the robustness and generality
of the NLP solvers on which they depend. However, direct
methods also tend to be fairly slow and require large opti-
mization packages.

Alternatively, indirect methods exploit the Markov struc-
ture of (4) and often impose strict Markovianity across the
entire problem, including the cost functions and constraints.
The dynamics constraints are then implicitly enforced by
simulating forward the system’s dynamics. Differential Dy-
namic Programming (DDP) and iterative LQR (iLQR) are
closely related indirect methods that solve (4) by breaking

it into a sequence of smaller sub-problems. DDP methods
improve on more naive “simple shooting” methods by incor-
porating a feedback policy during the forward simulation of
the dynamics at each time step. Because of their strict en-
forcement of dynamic feasibility, it is often difficult to find a
control sequence that produces a reasonable initialization for
DDP methods. While they are fast and have a low memory
footprint, making them amenable to embedded implemen-
tation, DDP methods have historically been considered less
numerically robust and less well-suited to handling nonlinear
state and input constraints.

This tutorial derives a method for solving constrained
trajectory optimization problems using DDP or iLQR within
an augmented Lagrangian framework. The result is a fast, ef-
ficient algorithm that allows nonlinear equality and inequality
constraints on both the states and controls.

This tutorial is based on previous research [1]–[3] and
experience implementing this algorithm in several program-
ming languages.

II. BACKGROUND

A. Augmented Lagrangian

Augmented Lagrangian is an optimization method for
solving constrained optimization problems of the form

minimize
x

f(x)

subject to c(x){≤,=}0.
(5)

One of the easiest methods for solving constrained op-
timization problems is to move the constraints into the
cost function and iteratively increase the penalty for either
getting close to or violating the constraint. However, penalty
methods only converge to the optimal answer as the penalty
terms are increased to infinity, which is impractical to
implement in a numerical optimization routine with limited-
precision arithmetic. Augmented Lagrangian methods im-
prove on penalty methods by maintaining estimates of the
Lagrange multipliers associated with the constraints. This is
accomplished by forming the augmented Lagrangian

LA = f(x) + λT c(x) +
1

2
c(x)T Iµc(x) (6)

where λ are the Lagrange multipliers, µ are the penalty
multipliers, and

Iµ =

{
0 if ci(x) < 0 ∧ λi = 0, i ∈ I
µi otherwise

. (7)

The problem is then solved as follows:
1) solve minx LA(x, λ, µ), holding λ and µ constant
2) update Lagrange multipliers

λ+i =

{
λi + µici(x

∗) i ∈ E
max(0, λi + µici(x

∗) i ∈ I,
(8)

3) update penalty term: µ+ = φµ, φ > 1
4) check constraint convergence
5) if tolerance not met, go to 1

where E and I are the sets of equality and inequality
constraint indices, respectively and φ is the penalty scaling
parameter (typically 2 ≤ φ ≤ 10).

B. Linear Quadratic Regulator

The Linear Quadratic Regular (LQR) problem is a canon-
ical problem in the theory of optimal control, partially due
to the fact that it has analytical solutions that can be derived
using a variety of methods, and from the fact that LQR is an
extremely useful tool in practice. We present derivations for
both continuous-time and discrete-time LQR. The discrete-
time derivation is particularly useful in setting up the ideas
that will used in deriving constrained DDP.

The continuous-time LQR problem is formulated as

min
u(t)

1

2
xT (tf)Q(tf)x(tf)

+
1

2

∫ tf

0

[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt

s.t. ẋ(t) = A(t)x(t) +B(t)u(t)

(9)

where R is a real, symmetric, positive-definite matrix and Q
is a real, symmetric, positive semi-definite matrix.

and the discrete-time LQR problem is

min
u(t)

1

2
xTNQNxN

+
1

2

N−1∑
k=0

[xTkQkxk + uTkRkuk]dt

s.t. xk+1 = Akxk +Bkuk

(10)

1) Hamilton-Jacobi-Bellman Derivation: The Hamilton-
Jacobi-Bellman equation is an important equation in the
theory of optimal control that states the necessary conditions
for optimality for a continuous-time system. We define the
cost function to be

J(x(t), u(t), t) = `(x(tf), t) +

∫ tf

0

`(x(t), u(t), t)dt (11)

and the minimum cost function

J∗(x(t), t) = min
u(t)

J(x(t), u(t), t). (12)

We now define the Hamiltonian as

H(x(t), u(t), J∗x , t) = `(x(t), u(t), t)

+ J∗Tx (x(t), t)[f(x(t), u(t), t]
(13)

where J∗x = ∂J∗

∂x and f(x(t), u(t), t) are the dynamics.
The Hamilton-Jacobi-Bellman equation is then

0 = J∗t (x(t), t) +H(x(t), u∗(t), J∗x , t) (14)

We now use these to solve the continuous LQR problem.
We form the Hamiltonian

H(x(t), u(t), J∗x , t) = xT (t)Q(t)x(t) + uT (t)R(t)u(t)

+ J∗Tx (x(t), t)[A(t)x(t) +B(t)u(t)] (15)

and minimize it with respect to u(t) by setting ∂H/∂u = 0:

∂H
∂u

= Ru+BTJ∗x = 0. (16)

Solving with respect to u yields the optimal control

u∗ = −R−1BTJ∗x (17)

which is globally optimal since ∂2H
/
∂u2 = R(t) is positive

definite.
Substituting the optimal control back into our Hamiltonian

(15):

H(x, u∗, J∗x , t) =
1

2
xTQx+

1

2
J∗Tx BR−1BTJ∗x

+ J∗Tx [Ax−BR−1BTJ∗x]

=
1

2
xTQx− 1

2
J∗Tx BR−1BTJ∗x

+ J∗Tx Ax

(18)

We’re now ready to use the Hamilton-Jacobi-Bellman
equation (14). Since the HJB equation is a first-order partial
differential equation of the minimum cost, we need to guess
a solution, which we assume to be quadratic:

J∗(x(t), t) =
1

2
xT (t)K(t)x(t) (19)

where K is a symmetric positive-definite matrix.
Plugging these into the HJB equation we get:

0 =
1

2
xT
(
K̇ +Q−KTBR−1BTK + 2KA

)
x (20)

Leveraging the symmetry of quadratic forms and the fact
that (20) must be equal to zero for all x(t) we arrive at the
Riccati equation:

0 = K̇ +Q−KTBR−1BTK +KA+ATK. (21)

When solved for K(t) using a specialized Riccati solver, the
optimal control law is given by

u ∗ (t) = −R−1(t)BT (t)K(t)x(t). (22)

2) Discrete LQR: We now shift our focus to solving the
discrete-time LQR problem (10). We start by defining the
value function

Vi(x) = min
uk,...,uN−1

1

2
xTNQxN +

1

2

N−1∑
k=i

xTkQkxk + uTkRkuk

(23)
subject to the dynamics: xk+1 = Akxk + Bkuk. This gives
the cost of starting at a particular state and simulating
the dynamics forward. The cost of the entire trajectory
is therefore V0(x0). From the Bellman equation and the
principle of optimality we can re-define the value function
in a more convenient, recursive form:

Vk(x) = min
uk

1

2
xTkQkxk+

1

2
uTkRkuk+Vk+1(Akxk+Bkuk)

(24)
which simple state that the cost-to-go is simply the cost
incurred for the current decision, plus the cost-to-go of where
our current decision takes us (by simulating our dynamics

forward one time instance). For convenience, we define
the action-value function Q(xk, uk) to be the value being
minimized:

Vk(x) = min
uk

Q(xk, uk) (25)

We also assume that Vk(x) is a quadratic form, i.e.

Vk(x) =
1

2
xTk Pkxk (26)

so that the action-value function takes the following form:

Q(xk, uk) =
1

2
xTkQkxk +

1

2
uTkRkuk

+
1

2
(Akxk +Bkuk)TPk+1(Akxk +Bkuk) (27)

Since there are no controls to optimize at the last time
step, we note that

VN (x) =
1

2
xTNQNxN (28)

Since we know the terminal cost-to-go, we can find the op-
timal cost-to-go for all time steps once we have a recurrence
relation that gives Vk as a function of Vk+1. We start by
optimizing the action-value function at time step k, which
has the following first-order necessary condition:

∂Q

∂u
=0

=Rkuk +BTPk+1(Akxk +Bkuk)
(29)

Solving for u we find the optimal control trajectory:

u∗k =− (Rk +BTk Pk+1Bk)−1BTk Pk+1Akxk

= −Q−1uuQuxxk
= −Kkxk

(30)

where Quu = ∂2Q
/
∂u2 and Qux = ∂2Q

/
∂u∂x . We

introduce this notation for easy comparison to the more
complicated DDP derivation in the following sections.

With an optimal feedback policy, we now substitute (30)
into (27) to get the cost-to-go:

Vx(x) =Q(xk, u
∗
k)

=
1

2

(
xTkQkxk + xTkK

T
k RkKkxk

+ xTk (Ak −BkKk)TPk+1(Ak −BkKk)xk
)

=
1

2
xT
(
Qk +ATk Pk+1Ak

+KT
k (Rk +BTPk+1Bk)Kk

−KT
k B

T
k Pk+1Ak −AkPk+1BkKk

)
xk

=
1

2
xTk Pkxk

(31)

where, after substituting in (30) and simplifying,

Pk = Qk +ATk Pk+1Ak

−ATk PTk+1Bk(Rk +BTk Pk−1Bk)−1BTk Pk+1Ak. (32)

This establishes the recurrence relation between Vk and
Vk+1, which can be used to recursively calculate the cost-to-
go for the entire trajectory, along with the optimal feedback
control gains Kk.

III. AL-DDP

We now present the derivation for solving constrained
trajectory optimization problems using differential dynamic
programming and iterative LQR within an augmented La-
grangian framework (AL-DDP or AL-iLQR). The derivation
proceeds very similarly to that of discrete LQR, as derived
in Section II-B.2.

The key idea of DDP is that at each iteration, all nonlinear
constraints and objectives are approximated using first or sec-
ond order Taylor series expansions so that the approximate
functions, now operating on deviations about the nominal
trajectory, can be solved using discrete LQR. This optimal
feedback policy is computed during the “backward pass”
(Algorithm 1), since the dynamic programming step begins
at the tail of the trajectory, as in LQR. The optimal deviations
are then applied to the nominal trajectory during a “forward
pass” (Algorithm 2), using the optimal feedback policy
during the forward simulation—also known as rollout–of the
dynamics.

To handle constraints, we simply “augment” the cost func-
tion with the multiplier and penalty terms of the augmented
Lagrangian, treating λ and µ as constants. After several
iterations DDP, the multipliers and penalty terms are updated,
and the process is repeated. The algorithm is summarized in
Algorithm 3. We now proceed with the formal derivation.

A. Backward Pass

We first form the augmented Lagrangian of (4):

LA =`N (xN) +
(
λN +

1

2
cN (xN)Iµ,N

)T
cN (xN)

+

N−1∑
k=0

[
`k(xk, uk,∆t)

+
(
λ+

1

2
ck(xk, uk)T Iµ,k

)T
ck(xk, uk)

]
=LN (xN , λN , µN) +

N−1∑
k=0

Lk(xk, uk, λk, µk)

(33)

where λk ∈ Rpk is a Lagrange multiplier, µk ∈ Rpk is a
penalty weight, and ck = (gk, hk) ∈ Rpk is the concatenated
set of inequality and equality constraints with index sets Ik
and Ek, respectively. Iµk

∈ Rpk×pk is the penalty matrix
defined in (7).

We now define the cost-to-go and the action-value func-
tions as before:

VN (xN)|λ,µ = LN (xN , λN , µN) (34)
Vk(xk)|λ,µ = min

uk

{Lk(xk, uk, λk, µk)

+ Vk+1(f(xk, uk,∆t))|λ,µ} (35)
= min

uk

Q(xk, uk)|λ,µ, (36)

where Vk(x)|λ,µ is the cost-to-go at time step k evaluated
with the Lagrange multipliers λ and the penalty terms µ.

In order to make the dynamic programming step feasible,
we take a second-order Taylor series of the nonlinear cost-
to-go

δVk(x) ≈ 1

2
δxTk Pkδxk + pTk δxk (37)

where Pk and pk are the Hessian and gradient of the cost-to-
go at time step k, respectively. It is important to note that by
taking Taylor series approximations, we have now switched
to optimizing deviations about the nominal control trajectory.

Similar to (28), we can trivially calculate the cost-to-go at
the terminal time step since there are no controls to optimize:

pN = (`N)x + (cN)Tx (λ+ IµN
cN) (38)

PN = (`N)xx + (cN)Tx IµN
(cN)x. (39)

which are simply the gradient and Hessian of (34) with
respect to the states xN .

The relationship between δVk and δVk+1 is derived by
taking the second-order Taylor expansion of Qk with respect
to the state and control,

δQk =
1

2

[
δxk
δuk

]T[
Qxx Qxu
Qux Quu

] [
δxk
δuk

]
+

[
Qx
Qu

]T[
δxk
δuk

]
(40)

Dropping the time-step indices for notational clarity, the
block matrices are,

Qxx = `xx +ATP ′A+ cTx Iµcx (41)

Quu = `uu +BTP ′B + cTu Iµcu (42)

Qux = `ux +BTP ′A+ cTu Iµcx (43)

Qx = `x +AT p′ + cTx (λ+ Iµc) (44)

Qu = `u +BT p′ + cTu (λ+ Iµc), (45)

where A = ∂f/∂x|xk,uk
, B = ∂f/∂u|xk,uk

, and ′ indicates
variables at the k + 1 time step. It is in this step that we
differentiate between DDP and iLQR. DDP computes the full
second-order expansion, which includes computations with
rank-3 tensors resulting from the vector-valued dynamics and
general constraints. iLQR computes these expansions only
to first order, such that the dynamics and constraints are
both linear in the states and controls, resulting in a Gauss-
Newton approximation of the true Hessian. While this lower
accuracy expansion results in the need for more iterations,
these iterations are considerably less expensive to compute,
often resulting in a considerably faster overall convergence
rate. The value of the full second-order information often
depends on the type of problem being solved, and there exist
a variety of methods for approximating the rank-3 tensor
information without the need to explicitly compute it. The
motivation for the name “iterative LQR” should now be clear,
as we see that by linearizing the dynamics we arrive at
problem nearly identical to (10).

Minimizing (40) with respect to δuk gives a correction to
the control trajectory. The result is a feedforward term dk
and a linear feedback term Kkδxk. Regularization is added
to ensure the invertibility of Quu:

δu∗k = −(Quu+ρI)−1(Quxδxk+Qu) ≡ Kkδxk+dk. (46)

Take a quick moment to note that this is almost exactly the
same as (30), except we have now added some regularization
to handle poorly conditioned Hessians (since these now
depend on the expansion about the nominal trajectory) and
now have a feedforward term, which results from the linear
terms in the expansion. We would see similar terms appear
in LQR if we included linear terms in the cost function.

Substituting δu∗k back into (40), a closed-form expression
for pk, Pk, and the expected change in cost, ∆Vk, is found:

Pk = Qxx +KT
k QuuKk +KT

k Qux +QxuKk (47)

pk = Qx +KT
k Quudk +KT

k Qu +Qxudk (48)

∆Vk = dTkQu +
1

2
dTkQuudk. (49)

Algorithm 1 Backward Pass
1: function BACKWARDPASS(X,U)
2: pN , PN ← (38), (39)
3: for k=N-1:-1:0 do
4: δQ← (40), (41)-(43)
5: if Quu � 0 then
6: K, d,∆V ← (46), (49)
7: else
8: Increase ρ and go to line 3
9: end if

10: end for
11: return K, d,∆V
12: end function

B. Forward Pass
Now that we have computed the optimal feedback gains

for each time step, we now update the nominal trajectories
by simulating forward the dynamics. Since the initial state is
fixed, the entire forward simulation can be summarized by
the following updates:

δxk =x̄k − xk (50)
δuk =Kkδxk + αdk (51)
ūk =uk + δuk (52)

x̄k+1 =f(x̄k, ūk) (53)

where x̄k and ūk are the updated nominal trajectories and
0 ≤ α ≤ 1 is a scaling term.

1) Line Search: : As with all nonlinear optimization, a
line search along the descent direction is needed to ensure an
adequate reduction in cost. We employ a simple backtracking
line search on the feedforward term using the parameter
α. After applying equations (50)-(53) to get candidate state
and control trajectories, we compute the ratio of the actual
decrease to the expected decrease:

z =
J(X,U)− J(X̄, Ū)

−∆V (α)
(54)

where

∆V (α) =

N−1∑
k=0

αdTkQu + α2 1

2
dTkQuudk (55)

is the expected decrease in cost, computed by simply using
d̄k = αdk to compute (49) at each time step. This can be
computed very efficiently by simply storing the two terms in
(49) separately and then scaling them by α and α2 during
the forward pass.

If z lies within a the interval [β1, β2], usually [1e-4, 10],
we accept the candidate trajectories. If it does not, we update
the scaling parameter α = γα, where 0 < γ < 1 is the
backtracking scaling parameter. γ = 0.5 is typical. Increasing
the lower bound on the acceptance interval will require that
more significant progress is made during each backward-
forward pass iteration. Decreasing the upper bound will keep
the progress closer to the expected decrease. These values
aren’t changed much in practice.

2) Regularization: If the line search fails to make progress
after a certain number of iterations, or the cost “blows up”
to exceed some maximum threshold (can easily happen for
highly nonlinear, unstable dynamics) the forward pass is
abandoned and the regularization term ρ is increased prior
to starting the backward pass. Increasing the regularization
term effectively makes the partial Hessian in (46) more
like the identity matrix, effectively “steering” the Newton
(or Gauss-Newton) step direction towards the more naive
gradient descent direction, which tends to be more reliable
when the current iterate is far from the local optimum.

The regularization is also increased if the partial Hessian
in (46) looses rank during the backward pass. In this case,
the regularization term is increased and the backward pass is
restarted from the beginning. The regularization is only de-
creased after a successful backward pass. The regularization
scaling value is usually between 1.5 and 2.0.

Algorithm 2 Forward Pass
1: function FORWARDPASS(X,U,K, d,∆V, J)
2: Initialize x̄0 = x0, α = 1, J− ← J
3: for k=0:1:N-1 do
4: ūk = uk +Kk(x̄k − xk) + αdk
5: x̄k+1 ← Using x̄k, ūk, (3)
6: end for
7: J ← Using X,U
8: if J satisfies line search conditions then
9: X ← X̄, U ← Ū

10: else
11: Reduce α and go to line 3
12: end if
13: return X,U, J
14: end function

C. Termination Conditions

The “inner” DDP/iLQR solve is run until one of the
following termination conditions is met

• The cost decrease between iterations Jprev − J is less
than some intermediate tolerance, εintermediate. This is the
typical exit criteria.

• The feedforward gains go to zero. We compute the
average maximum of the normalized gains:

∇ilqr =
1

N − 1

N−1∑
k=0

‖dk‖∞
|Uk|+ 1

(56)

• The solver hits a maximum number of iterations, imax
ilqr

Algorithm 3 Iterative LQR
1: Initialize x0, U, tolerance
2: X ← Simulate from x0 using U , (3)
3: function ILQR(X,U)
4: J ← Using X,U
5: do
6: J− ← J
7: K, d,∆V ← BACKWARDPASS(X,U)
8: X,U, J ← FORWARDPASS(X,U,K, d,∆V, J−)
9: while |J − J−| > tolerance

10: return X,U, J
11: end function

D. Augmented Lagrangian Update

One the inner solve hits one of the termination conditions
listed in section III-C, the dual variables are updated accord-
ing to,

λ+ki =

{
λki + µkicki(x

∗
k, u
∗
k) i ∈ Ek

max(0, λki + µkicki(x
∗
k, u
∗
k)) i ∈ Ik,

(57)

and the penalty is increased monotonically according to the
schedule,

µ+
ki

= φµki , (58)

where φ > 1 is a scaling factor.
After experimenting with various different heuristic

schemes for updating the multipliers and the penalty param-
eters, we have found that the most naive approach, that is
updating them every outer loop iteration, is by far the most
reliable approach. It’s possible that better performance may
be achieved by skipping penalty updates, or only updating
some of penalty parameters (e.g. the ones corresponding to
active constraints), but we found that the most basic approach
works the best on the largest variety of problems.

E. Hyperparameters

For convenience, we summarize all the hyperparameters
in AL-iLQR, splitting them between those used for the
inner unconstrained iLQR solve and those used by the outer
Augmented Lagrangian solver.

IV. IMPROVEMENTS

Here we provide some improvements to the AL-iLQR al-
gorithm derived in the previous section. These improvements
are all incorporated into the ALTRO algorithm, summarized
in Algorithm 4 and implemented in TrajectoryOptimiza-
tion.jl.

Algorithm 4 ALTRO
1: procedure
2: Initialize x0, U, tolerances; X̃
3: if Infeasible Start then
4: X ← X̃ , s0:N−1 ← from (74)
5: else
6: X ← Simulate from x0 using U
7: end if
8: X,U, λ← AL-ILQR(X,U, tol.)
9: (X,U, λ)← PROJECTION((X,U, λ), tol.)

10: return X,U
11: end procedure

A. Square Root Backward Pass

Augmented Lagrangian methods make rapid convergence
on constraint satisfaction, but only as long as the penalty
terms are updated at every outer loop iteration. This can
quickly lead to very large penalty parameters, resulting in
severe numerical ill-conditioning. To help mitigate this issue
and make AL-iLQR more numerically robust we derive
a square-root backward pass inspired by the square-root
Kalman filter.

1) Background: To begin, we provide some background
on matrix square-roots. The Cholesky factorization of a
square positive-definite matrix G factors the matrix into
two upper-triangular matrices G = UTU , where the upper-
triangular matrix factor U can be considered a “square root”
of the matrix G. We denote this matrix square root as
U =

√
G.

Also in terms of background, the QR factorization F =
QR returns an upper-triangular matrix R and an orthogonal
matrix Q.

We now seek a method for computing
√
A+B in terms

of
√
A and

√
B, where A,B ∈ Rn×n are square positive-

definite matrices. We begin by noting that

A+B =
[√

A
T √

B
T
] [√A√

B

]
= FTF (59)

where F ∈ R2n×n. Taking the QR factorization of F we get

A+B =FTF

=RTQTQR

=RTR

(60)

since QTQ = I given that Q is an orthogonal matrix.
Therefore we have that R =

√
A+B since R is upper-

triangular. We use QRR(·) to denote the operation of taking
the QR factorization of the argument and returning the upper-
triangular factor.

The related equation
√
A−B can be computed using

successive rank-one downdates of
√
A using the rows of

√
B.

We denote this operation as DOWNDATE(
√
A,
√
B).

2) Derivation: The ill-condition of the backward pass is
most significant in the Hessian of the cost-to-go, Pk. Our
objective is to find an algorithm that only stores the square
root of this matrix and never calculates it explicitly.

https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl
https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl

TABLE I
ILQR HYPERPARAMETERS

Symbol Name Description Typical Value(s) Importance

εcost Cost tolerance Convergenced when difference in cost between iterations < εcost [1e-2, 1e-4, 1e-8] High
ε

ilqr
grad Gradient tolerance Converged when ∇ilqr < εilqrgrad 1e-5 Med

ilqrmax Max iterations Maximum number of backward/forward pass iterations [50,500] Med
β1 Line search l.b. Lower bound criteria for (54). ↑ requires more progress be made [1e-10,1e-8,1e-1] Low
β2 Line search u.b. Upper bound criteria for (54). ↓ requires progress match expected [1,10,20] Low
ilsmax Line search iterations Maximum number of backtracking line search iterations [5, 10, 20] Low
ρinit Initial regularization Initial value for regularization of Qzz in backward pass 0 Low
ρmax Max regularization Any further increases will saturate. ↓ allows for less aggressive regularization 1e-8 Low
ρmin Min regularization Any regularization below will round to 0. 1e-8 Low
φρ Reg. scaling How much regularization is increased/decreased (1,1.6,10) Low
Jmax Max cost Maximum cost allowed during rollout 1e8 Med

TABLE II
AUGMENTED LAGRANGIAN HYPERPARAMETERS

Symbol Name Description Typical Value(s) Importance

εcost Cost tolerance Converged when difference in cost between iterations ¡ εcost [1e2,1e-4,1e-8] High
εuncon iLQR cost tolerance Cost tolerance for intermediate iLQR solves. ↓ can speed up overall conver-

gence by requiring less optimality at each inner solve, resulting in more frequent
dual updates.

[1e-1,1e-3,1e-8] High

cmax Constraint tolerance Convergence when maximum constraint violation < cmax [1e-2,1e-4,1e-8] High
ioutermax Outer loop iterations Maximum number of outer loop updates [10,30,100] Med
µmax Max penalty ↑ allows for more outer loop iterations with good convergence, but may result

in poor conditioning. ↓ may avoid ill-conditioning
1e-8 Low

φµ Penalty scaling ↑ Increases penalty faster, potentially converges faster, but will eventually fail
to converge if too high

(1,10,100] Med

µinit Initial penalty ↑ more likely to remain feasible and find a feasible solution faster. ↓ makes
the initial problem appear unconstrained, which may be an ideal initial guess
for constrained problem.

[1e-4,1,100] Very High

We begin by calculating the square root of the terminal
cost-to-go:

SN =
√
PN = QRR

([
(`N)xx
Iµ,NcN

])
(61)

where we define S ∈ Rn×n =
√
P to be the upper-triangular

square root of the Hessian of the cost-to-go.
All that is left is to find

√
P k as an expression in terms

of
√
P k+1. We start by finding the square roots of Qxx and

Quu:

Zxx =
√
Qxx ← QRR

 √`xxS
′
A√
Iµcx

 (62)

Zuu =
√
Quu ← QRR



√
`uu
S
′
B√
Iµcu√
ρI


 . (63)

The optimal gains are then trivially computed as

K = −Z−1uuZ−Tuu Qux (64)

d = −Z−1uuZ−Tuu Qu, (65)

Here it’s important to note that these equations should be
computed using a linear solver (e.g. the “\” operator in
MATLAB or Julia) sequentially, since these equations are

trivially computed using backward or forward substitution,
given that the square root factors are triangular.

The gradient (48) and change of the cost-to-go (49) are
also computed with simple substitution:

p = Qx + (ZuuK)T (Zuud) + KTQu + Qxud (66)

∆V = dTQu +
1

2
(Zuud)T (Zuud). (67)

We note that (47) is a quadratic form that can be expressed
as

P =

[
I
K

]T [
Qxx QTux
Qux Quu

] [
I
K

]
P =

[
I
K

]T [
ZTxx 0
CT DT

] [
Zxx C

0 D

] [
I
K

]
=

[
Zxx + CK

DK

]T [
Zxx + CK

DK

] (68)

where,

C = Z−Txx Qxu (69)

D =

√
ZTuuZuu −QuxZ−1xx Z−Txx Qxu (70)

= DOWNDATE
(
Zuu, Z

−T
xx Qxu

)
. (71)

The square root of Pk is then
√
P k = QRR

([
Zuu + Z−Txx QxuK

DOWNDATE
(
Zuu, Z

−T
xx Qxu

)
·K

])
(72)

B. Infeasible State Trajectory Initialization

Desired state trajectories can often be identified (e.g.,
from sampling-based planners or expert knowledge), whereas
finding a control trajectory that will produce this result is
usually challenging. Dynamically infeasible state trajectory
initialization is enabled by introducing additional inputs to
the dynamics with slack controls s ∈ Rn,

xk+1 = f(xk, uk) + sk, (73)

to make the system artificially fully actuated.
Given initial state and control trajectories, X̃ and U ,

the initial infeasible controls s0:N−1 are computed as the
difference between the dynamics and desired state trajectory
at each time step:

sk = x̃k+1 − f(x̃k, uk) (74)

The optimization problem (4) is modified by replacing the
dynamics with (73). An additional cost term,

N−1∑
k=0

1

2
sTkRssk, (75)

and constraints sk = 0, k=0, . . . , N−1 are also added to
the problem. Since sk = 0 at convergence, a dynamically
feasible solution to (4) is still obtained.

C. Optimizing Quaternions

When dealing with robotic systems with arbitrary orien-
tation, such as satellites, airplanes, quadrotors, etc., the 3D
orientation must be optimized. Rotations present a unique
challenge for optimization since all vector parameterizations
of rotations are either underparameterized (e.g. Euler angles)
or subject to constraints (e.g. rotation matrix or quaternions).
Quaternions are often considered the best parameterization
of rotation, since they only use four parameters and have a
number of desireable qualities that make them attractive for
numerical computation. We begin with some background on
quaternions, along with our notation conventions for quater-
nion operations, and then present a method for handling
quaternions within AL-iLQR.

1) Background and Notation: The unit quaternion is a
four-parameter non-singular representation of rotations com-
prising a vector part z ∈ R3 and a scalar part s ∈ R. To rep-
resent quaternion operations as linear-algebraic expressions,
the following conventions are used: A quaternion q encodes
the rotation from a vehicle’s body frame to the world frame.
The equivalent rotation matrix is given by,

R(q) = I + 2z×(z× + sI), (76)

where I is the 3×3 identity matrix and z× denotes the 3×3
skew-symmetric cross-product matrix:

z× =

 0 −z3 z2
z3 0 −z1
−z2 z1 0

 . (77)

Quaternion multiplication is denoted q2⊗q1, and the quater-
nion conjugate, representing the opposite rotation, is denoted

q∗. For r ∈ R3, r̂ is a quaternion with s = 0 and z = r.
H ∈ R4×3 is the matrix “hat” operator, such that r̂ = Hr
and r = HT r̂. The matrix M(q) ∈ R4×4 is defined such
that M(q2)q1 = q2 ⊗ q1.

Quaternion rotations require special consideration in op-
timization problems to properly account for the unit-norm
constraint. We define φ ∈ R3 to be a three-dimensional
differential rotation, such that φ̂ = δq, where q = q0 ⊗ δq,
when δq is a small rotation. We seek the Jacobian G(q) ∈
R3×4 that maps from the quaternion to our three-dimensional
differential, φ. From above, we have q = q0⊗δq = q0⊗ φ̂ =
M(q0)Hφ, so G(q0)T = M(q0)H .

If h(q) : q 7→ Rp is a function that maps a quaternion to
a real-valued vector, the linearization of h(q) gives

δh ≈ G(q)
∂h(q)

∂q
G(q)Tφ. (78)

Similarly, for a real-valued function g(q) : q 7→ R, the
second-order Taylor series expansion is

δg ≈ ∂g(q)

∂q
G(q)Tφ+

1

2
φTG(q)

∂2g(q)

∂q2
G(q)Tφ (79)

2) Quaterion AL-iLQR: We now present modifications to
AL-iLQR in order to optimize states that contain quaternions.
With standard commercial solvers, like those used in direct
trajectory optimization methods, quaternions can only be
treated as vectors in R4, often resulting in poor performance.
With AL-iLQR we can modify the algorithm to correctly
optimize with respect to a unit quaternion. Extensions of
this method to states with multiple quaternions are easily
obtained through simple concatenation.

Let x ∈ Rn (n ≥ 4) be a state vector containing a unit
quaternion of the form,

x =

[
y
q

]
(80)

where y ∈ Rn−4 is a standard vector and q is the quaternion.
Using the results from above, the difference between two
states, x and x0, is

δx =

[
δy
φ

]
=

[
y − y0

HT (q∗0 ⊗ q)

]
∈ Rn−1, (81)

from which we get the Jacobian,

G(x) =

[
In−4 0

0 G(q)

]
(82)

where G(x) ∈ Rn−1×n. The next sections detail how
to modify the AL-iLQR backward and forward passes to
correctly take expansions with respect to quaternion states.

Backward pass: The backward pass of iLQR linearizes the
dynamics at each time step and approximates the cost-to-go
as a quadratic function by taking the second-order Taylor
series expansion of the cost-to-go. PN ∈ Sn++, pN ∈ Rn are
the Hessian and gradient of the terminal cost-to-go and the
corrected terms are,

P̃N = G(xN)PNG(xN)T (83)
p̃N = G(xN)pN (84)

Qxx, Qux, and Qx are the terms from the approximate
quadratic expansion of the action-value function at time
step k that must be modified. The corrected terms from the
expansion are:

Q̃xx = G(xk)QxxG(xk)T (85)

Q̃ux = QuxG(xk)T (86)

Q̃x = G(xk)Qx. (87)

The rest of the backward pass proceeds as normal, using the
corrected expansion terms.

Forward pass: The only required modification to the
forward pass is the correct calculation of the difference
between states x and x0 using (81). The modified change in
control, where K ∈ Rm×(n−1) and d ∈ Rm are the feedback
and feedforward gains from the backward pass, is:

δuk = Kkδxk + dk. (88)

Objective: Directly subtracting states that contain quater-
nions (or any rotational representation) is incorrect. A good
alternative is to again use the state difference Jacobian, as
demonstrated in the following objective,

J̃(X,U) =

(xN − xf)TG(xN)T W̃NG(xN)(xN − xf)

+ ∆t

N−1∑
k=0

(xk − xf)TG(xk)T W̃kG(xk)(xk − xf)

+ (u− ur)TVk(u− ur)

(89)

where W̃ ∈ Sn−1+ , V ∈ Sm++ are cost matrices. Here the
three-parameter angular representation φ is penalized.

D. Solution Polishing

Augmented Lagrangian methods only make good progress
on constraints as long as the penalty terms are updated.
However, the penalties can only be updated a finite number
of times before the penalties result in severe ill-conditioning,
as discussed previously. As a result, augmented Lagrangian
methods suffer from slow “tail” convergence, or convergence
near the optimal solution. Active-set methods, on the other
hand, exhibit quadratic convergence near the optimal solu-
tion. We present an active-set projection method to rapidly
converge on the constraints once the convergence of AL-
iLQR slows down.

This final solution polishing method solves the following
optimization problem:

minimize
δz

δzTHδz

subject to Dδz = d
(90)

where z ∈ RNn×(N−1)m is the concatenated vector of
the states and controls at all time steps, H is the Hessian
of the cost, and D, d are the linearized active constraints.
Constraints are considered active if the constraint violation
is less than some small positive value εconstraint.

This problem essentially projects the solution from AL-
iLQR onto the constraint manifold, while minimizing impact

to the cost. Algorithm 5 takes successive Newton steps δz,
only updating the constraint Jacobian D when the conver-
gence rate r drops below a threshold, allowing re-use of the
same matrix factorization S for inexpensive linear system
solutions. Further, this algorithm can be implemented in a
sequential manner [4] that does not require building large
matrices, making it amenable to embedded systems.

Algorithm 5 Projection
1: function PROJECTION(Y, tol.)
2: H−1 ← invert Hessian of objective
3: while ‖d‖∞ > tol. do
4: d,D ← linearize active constraints
5: S ←

√
DH−1DT

6: v ← ‖d‖∞
7: r ←∞
8: while v > tol. and r > conv. rate tol. do
9: Y, v+ ← LINESEARCH(Y, S,H−1, D, d, v)

10: r ← log v+/ log v
11: end while
12: end while
13: return Y
14: end function

Algorithm 6 Projection Line Search
1: function LINESEARCH(Y, S,H−1, D, d, v0)
2: Initialize α, γ
3: while v > v0 do
4: δYp ← H−1DT (S−1S−T d)
5: Ȳp ← Yp + αδYp
6: d← UPDATECONSTRAINTS(Ȳp)
7: v ← ‖d‖∞
8: α← γα
9: end while

10: return Ȳ , v
11: end function

APPENDIX

REFERENCES

[1] T. A. Howell, B. E. Jackson, and Z. Manchester,
“ALTRO: A Fast Solver for Constrained Trajectory
Optimization,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Macau, China, Nov.
2019.

[2] B. E. Jackson, T. Punnoose, D. Neamati, K. Tracy,
and R. Jitosho, “ALTRO-C: A Fast Solver for Conic
Model-Predictive Control,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), Xi’an,
China, Jun. 2021, p. 8.

[3] B. E. Jackson, K. Tracy, and Z. Manchester, “Planning
With Attitude,” IEEE Robotics and Automation Letters,
pp. 1–1, 2021.

[4] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Appli-
cation of Interior-Point Methods to Model Predictive
Control,” en, Journal of Optimization Theory and Ap-
plications, vol. 99, no. 3, pp. 723–757, Dec. 1998.

	Introduction
	Background
	Augmented Lagrangian
	Linear Quadratic Regulator
	Hamilton-Jacobi-Bellman Derivation
	Discrete LQR

	AL-DDP
	Backward Pass
	Forward Pass
	Line Search
	Regularization

	Termination Conditions
	Augmented Lagrangian Update
	Hyperparameters

	Improvements
	Square Root Backward Pass
	Background
	Derivation

	Infeasible State Trajectory Initialization
	Optimizing Quaternions
	Background and Notation
	Quaterion AL-iLQR

	Solution Polishing

	Appendix

