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Abstract—Model-predictive control (MPC) is an increasingly
popular method for controlling complex robotic systems in which
optimal control problems are solved on board the robot at real-
time rates. However, successful application of MPC depends
critically on the performance of the algorithms used to solve the
underlying optimization problems. An ideal solver should both
leverage the structure of the MPC problem and support efficient
“warm starting” so that information from previous solutions can
be recycled to speed convergence. We present ALTRO-C, a high-
performance solver with both of these properties that utilizes
an augmented Lagrangian method to handle general convex
conic constraints. We demonstrate the new solver’s superior
performance against several existing state-of-the-art solvers on
a variety of benchmark control problems formulated as both
quadratic and second-order cone programs.

I. INTRODUCTION

Model-predictive control (MPC) has become a widely used
approach for controlling complex robotic systems with several
notable successes in recent years [1]–[3]. By transforming the
control problem into an optimization problem with an explicit
objective and constraints, MPC can achieve desired behav-
iors while accounting for complex dynamics, torque limits,
and obstacle avoidance. However, because these optimization
problems must typically be solved at rates of tens to hundreds
of Hertz on board the robot, efficient and reliable solver
algorithms are crucial to their success.

In practice, most MPC problems are formulated as convex
optimization problems, since convex solvers are available that
can guarantee convergence to a globally optimal solution, or
provide a certificate of infeasibility if a solution does not exist.
A variety of numerical techniques for solving such problems
have been developed over the past several decades, and many
high-quality solver implementations—both open-source and
proprietary—are available. In the control community, a par-
ticular emphasis has been placed on high-performance solvers
for quadratic programs (QPs) that are suited to real-time use
on embedded computing hardware, including active-set [4],
[5], interior-point [6]–[8], and alternating direction method
of multipliers (ADMM) [9] methods. There has also been at

least one interior-point solver for second-order cone programs
(SOCPs) developed for embedded applications [10].

To achieve high performance on MPC problems, a solver
must a) exploit problem structure with sparse matrix factor-
ization techniques, b) take advantage of previous solutions
to “warm start” the current solve, and c) efficiently handle
convex conic constraints on states and inputs. We present
ALTRO-C, a modified version of the ALTRO solver [11]
originally developed for offline solution of nonlinear trajec-
tory optimization problems, that achieves all three of these
properties. As a result, it delivers state-of-the-art performance
on both QPs and SOCPs in MPC applications, and can easily
support optimization over other cones in the future. To the best
of our knowledge, ALTRO-C is the first solver specifically
designed for MPC applications that can handle second-order
cone constraints. In summary, our contributions include:

• A novel method for incorporating conic—including
second-order cone—constraints into a Differential Dy-
namic Programming (DDP)-based trajectory optimization
solver.

• An open-source solver implementation in Julia that de-
livers state-of-the-art performance for convex MPC prob-
lems with a convenient interface for defining trajectory
optimization problems.

• A suite of benchmark MPC problems that demonstrate
the solver’s performance, including a satellite with flex-
ible appendages, a quadruped with both linearized and
second-order friction cones, rocket soft-landing, and ma-
nipulation with contact.

The paper proceeds as follows: After defining our notation
in Section II, we present our method for handling conic con-
straints with an augmented Lagrangian in Section III. Section
IV summarizes the ALTRO-C algorithm and discusses various
implementation details. We provide numerical comparisons on
several MPC problems in Section V, with concluding remarks
in Section VI.



II. NOTATION AND CONVENTIONS

For an MPC problem with state x ∈ Rn, control u ∈ Rm,
and horizon length N , we denote state and control trajectories
as X = {x1, x2, . . . , xN} and U = {u1, u2, . . . uN−1}.
Unless otherwise noted, when constraints include subscripts k
indicating time steps, they are assumed to apply to all indices
IN = {1, . . . , N}.

III. CONIC AUGMENTED LAGRANGIAN

There has been great interest in recent years within the op-
timization community in optimization over cones, sometimes
referred to as generalized inequalities. The second-order cone,
Ksoc = {(v, s) ∈ Rn+1 | ‖v‖2 ≤ s}, (also known as the
quadratic cone or the Lorentz cone) has proven particularly
useful in control applications including the rocket soft-landing
problem [12], [13] and friction cone constraints that appear in
manipulation or locomotion tasks [14]. Before methods existed
for directly attacking SOCPs, many practitioners linearized
this cone, resulting in increased problem sizes and less ac-
curate or sub-optimal solutions.

Most existing specialized “conic” solvers are based on
ADMM [15], [16] or interior-point [10] methods. Both of
these approaches have tradeoffs: ADMM methods converge
slowly (linearly) but are very warm-startable, while interior-
point methods converge quickly (quadratically) but aren’t well-
suited to warm-starting. The augmented Lagrangian method
(ALM) is an attractive middle-ground, offering both superlin-
ear convergence and good warm-starting capabilities.

Despite some theoretical work showing promising conver-
gence analyses of ALM for conic programs [17]–[21] and
several ALM implementations for solving large-scale semi-
definite programs (SDPs) [22], [23], no ALM implementation
for SOCPs existed until very recently [24]. Building on that
work, our aim is to develop an ALM SOCP solver that exploits
the special structure of MPC problems.

Augmented Lagrangian methods solve constrained opti-
mization problems by solving a series of unconstrained prob-
lems minimizing the augmented Lagrangian:

LA(x) = f(x)− λT c(x) + µ
1

2
c(x)T c(x), (1)

where f(x) : Rn 7→ R is the objective function, c(x) : Rn 7→
Rm is an equality constraint function, λ ∈ Rm is a Lagrange
multiplier, and µ ∈ R is a penalty weight. This standard
form can also be adapted to handle inequality constraints, as
described in [11], [25].

After each unconstrained minimization of (1) with respect
to x, the penalty µ is increased and the Lagrange multiplier λ
is updated according to,

λ← (λ− µc(x)) , (2)

which is equivalent to a gradient ascent step on the dual prob-
lem [26]. Augmented Lagrangian methods are theoretically
capable of superlinear convergence rates, but often exhibit poor
“tail-convergence” behavior in practice due to ill-conditioning
as µ is increased.

Based on [17], we generalize the augmented Lagrangian
method to enforce general conic constraints. Equation (1) can
be rewritten as,

LA(x) = f(x) +
1

2µ
(‖λ− µc(x)‖2 − ‖λ‖2). (3)

Comparing the first quadratic penalty term λ−µc(x) with the
standard dual ascent step (2), we see that this reformulation is
effectively penalizing the difference between the current and
updated Lagrange multiplier estimates.

If our constraint is instead required to lie within the cone
K, we can modify the augmented Lagrangian penalty to pe-
nalize the difference between the multipliers after the updated
multiplier is projected back into the cone,

LA(x) = f(x) +
1

2µ
(‖ΠK(λ− µc(x))‖2 − ‖λ‖2), (4)

where ΠK(x) : Rp 7→ Rp is the projection operator for the
cone K. We refer to (4) as the conic augmented Lagrangian.

For simple inequality constraints of the form c(x) ≤ 0,
the projection is onto the non-positive orthant: ΠK−(x) =
min(0, x). Simple closed-form expressions for the projection
operator exist for several other cones, including the second-
order cone:

ΠKsoc(x) =


0 ‖v‖2 ≤ −s
x ‖v‖2 ≤ s
1
2 (1 + s/‖v‖2)[vT ‖v‖2]T ‖v‖2 > |s|

(5)

where v =
[
x0 . . . xp−1

]T
, s = xp. Analogous to (2), the dual

update in the conic case becomes,

λ← ΠK(λ− µc(x)). (6)

IV. ALTRO-C SOLVER

In contrast to many modern “direct” methods for trajectory
optimization, ALTRO relies on iterative LQR (iLQR) to re-
main dynamically feasible at every iteration and exploit the
Markovian structure of MPC problems. At each iteration of
the iLQR algorithm (summarized in Algorithm 1), a second-
order Taylor series approximation of the problem is computed
and a backward Riccati recursion is used to compute an update
to the nominal (feed-forward) control trajectory and a time-
varying LQR (TVLQR) feedback controller. The closed-loop
dynamics are then simulated forward to compute an updated
state trajectory.

While fast and efficient, the standard iLQR algorithm has no
ability to deal with constraints on the states or controls. To han-
dle constraints, ALTRO uses iLQR as the inner unconstrained
solver in an augmented Lagrangian method. To overcome
the poor tail convergence of the ALM in situations where
tight solution tolerances are required, ALTRO performs a final
active-set projected Newton “solution-polishing” step using a
Cholesky factorization coupled with iterative refinement [11].



Algorithm 1 iLQR

1: function ILQR(`, f,X,U )
2: while not converged do
3: J(δX, δU)← Quadratic expansion of ` at X,U
4: A1:N , B1:N ← Linearize dynamics f at X,U
5: K1:N , d1:N ← TVLQR(J,A1:N , B1:N )
6: α← 1
7: for k=1:N-1 do
8: ūk = uk +Kk(x̄k − xk) + αdk
9: x̄k+1 ← f(x̄k, ūk)

10: end for
11: if line search conditions satisfied then
12: X ← X̄, U ← Ū
13: else
14: Reduce α and go to line 7
15: end if
16: end while
17: return X,U
18: end function

A. Implementation Details

The ALTRO solver was adapted to support second-order
cone constraints using the augmented Lagrangian formulation
introduced in Section III. Analytic first and second-order
derivatives of (5) were implemented to calculate the expan-
sions of (4) required by the iLQR algorithm. No changes were
made to the active-set solution-polishing method.

In addition to adding second-order cone constraints, the
Julia implementation of ALTRO-C has been improved sub-
stantially from the original version presented in [11], enabling
the competitive timing results demonstrated in Section V.
Memory allocations have been eliminated wherever possible,
and ALTRO-C has been particularly optimized for small-
to-medium-size problems by leveraging loop-unrolling and
analytical linear algebra1. In addition to excellent performance,
ALTRO-C provides a convenient API that dramatically sim-
plifies MPC problem definition and provides convenient and
efficient methods for updating the MPC problem between
iterations.

V. EXAMPLES

The following examples were run on an Intel i7-1165G7
processor. For the QP examples, ALTRO-C was compared
against OSQP [9], a state-of-the-art ADMM QP solver op-
timized for online optimization, and the SOCP examples
were compared against ECOS [10], an interior-point SOCP
solver designed for embedded applications, COSMO [15], a
state-of-the-art ADMM SOCP method, and Mosek2, a high-
quality commercial convex optimization package. All prob-
lems were solved to cost and constraint tolerances of 10−4,
so the solution-polishing steps of both ALTRO-C and OSQP
were disabled. The reported timing results only capture the

1These algorithms are part of the StaticArrays.jl package
2https://www.mosek.com/

time to solve the convex optimization problem: All overhead
associated with modifying the problem during each MPC
iteration is omitted. Future work with emphasis on applications
will include the often non-trivial steps required to efficiently
update the problem between iterations, although fast and
allocation-free methods are already implemented in ALTRO-
C3. Code for the examples is available at https://github.com/
RoboticExplorationLab/altro-mpc-icra2021.

A. Random Linear MPC
We compared the general performance of ALTRO-C and

OSQP on a set of random QPs of the following form:

minimize
X,U

N∑
k=1

‖xk − x̄k‖2Qk
+

N−1∑
k=1

‖uk‖2R

subject to xk+1 = Axk +Buk,

x1 = 0,

u− ≤ uk ≤ u+

(7)

The problems were generated from the following distributions:
Qii ∼ U(0, 10), Rii = 0.1, Qf = (N − 1)Q, and u+i = u−i =
3. The reference trajectory x̄k, ūk was generated by randomly
generating a control trajectory ū ∼ N (0, 1) and simulating the
system forward. Random dynamics matrices, A and B, were
generated such that the eigenvalues of A were within the unit
circle and the system was controllable.

At each MPC iteration, the first control was used to simulate
the system forward with additive noise: xk+1 = Axk +Buk +
εk, where εk ∼ N (0, ‖xk‖∞/100). The primal and dual
variables for each solver were then shifted by one time step
to warm-start the next solve.

We compare solve times while varying the state dimension
n in Fig. 1a, the control dimension m in Fig. 1b, and the
time horizon N in Fig. 1c. As expected, both ALTRO-C and
OSQP demonstrate linear scaling with respect to the horizon
length, while ALTRO-C achieves significantly lower overall
times. Both solvers exhibit polynomial scaling in the state and
control dimensions, with ALTRO-C achieving better scaling
with respect to state dimension. Because ALTRO-C directly
optimizes control trajectories using a Ricatti recursion, it
exhibits worse scaling with respect to input dimension. While
ALTRO-C is faster than OSQP for m < 15, OSQP has an
advantage for systems with larger input dimensions.

B. Flexible Spacecraft
For spacecraft with flexible appendages, controlling the

attitude with a naive feedback controller can result in poor
performance due to excitation of flexible modes. Running
an MPC controller in this scenario is advantageous because
it can plan for known disturbances and better reason about
actuator constraints [27]. The nonlinear dynamics of a flexible
spacecraft [28] were linearized about a reference orientation,
resulting in the following linear ODEs,

Jω̇ +GT η̈ = τd − u,
η̈ + Cη̇ +Kη + Φf = −Gω̇,

(8)

3Available in the Altro.jl and TrajectoryOptimization.jl packages

https://github.com/JuliaArrays/StaticArrays.jl
https://www.mosek.com/
https://github.com/RoboticExplorationLab/altro-mpc-icra2021
https://github.com/RoboticExplorationLab/altro-mpc-icra2021
https://github.com/RoboticExplorationLab/Altro.jl
https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl
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Fig. 1: Comparison of ALTRO-C and OSQP as a function of a) state dimension (N = 21,m = 2), b) control dimension
(N = 21, n = 30), and c) horizon length (n = 12,m = 6). The x-axis is labeled at the sampled sizes.

where ω ∈ R3 is the spacecraft’s angular velocity, η ∈ R3 is
the modal displacement, J is the spacecraft’s inertia matrix,
G is the Jacobian mapping modal displacement to angular
displacement, Φ is the Jacobian mapping modal displace-
ment to linear displacement, C is the damping matrix, K
is the stiffness matrix, f is the disturbance force, τd is the
disturbance torque, and u ∈ R3 is the control torque. This
linearization is valid for inertial pointing scenarios where
deviations from the reference attitude are limited to a few
degrees. The flexible spacecraft pointing problem can be posed
as a convex MPC problem with 12 states, 3 controls, and linear
actuator constraints.

For large spacecraft, the dynamics are relatively slow, so
a sample rate of 2 Hz and horizon of 40 seconds were
used for this problem. The cost function included quadratic
penalties on pointing error, angular velocity, excitation of the
flexible modes, and the control inputs, which were bounded
between ±0.1 N·m. As shown in Fig. 2, both solvers are able
to leverage warm-starting to reduce the number of iterations
required for convergence after a handful of MPC steps, with
ALTRO-C being at least twice as fast as OSQP after the first
few steps.

C. Quadruped

Quadrupeds are high dimensional, underactuated robotic
systems that are challenging to control. Current state-of-the-
art approaches simplify the dynamics and pre-specify a foot
contact sequence so that the problem can be cast as a quadratic
program that can readily be solved online.

Based on [3], we model the robot as a single rigid body with
with xk ∈ R12 and contact forces acting at the legs treated
as control inputs uk ∈ R12. A convex problem is obtained by
linearizing the dynamics about the current reference, resulting
in a problem similar to (7), but with additional friction-cone
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Fig. 2: Solve times for OSQP and ALTRO-C for the flexible
spacecraft pointing problem. Both ALTRO-C and OSQP ben-
efit from warm starting, leading to reduced solve times as the
simulation progresses. ALTRO-C reaches a significantly faster
steady state solve time than OSQP.

constraints on the foot contact forces,∥∥f ti,k∥∥2 ≤ µfni,k i ∈ {1, . . . , 4}, (9a)

0 ≤ fni,k i ∈ {1, . . . , 4} (9b)

where f ti,k and fni,k ∈ R3 are the tangential and normal
components of the contact forces of foot i at time step k,
respectively. Most MPC implementations further linearize the
second-order friction cone constraint (9a),

−µ̃fn ≤ f tx ≤ µ̃fn,
−µ̃fn ≤ f ty ≤ µ̃fn,

(10)

resulting in a QP. Both the original SOCP and linearized QP
versions of the problem can be solved with ALTRO-C.

ALTRO-C was compared to OSQP using the QP formu-
lation and ECOS for the SOCP formulation. The MuJoCo
simulator [29] was used to simulate the full nonlinear dynam-
ics of the quadruped walking in place. ALTRO-C and OSQP
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friction cone. Error bars denote one standard deviation.

were warm started with the solution from the previous step.
Timing results are shown in Fig. 3. While OSQP is slightly
faster than ALTRO-C, both solvers achieve sub-millisecond
times. Interestingly, ALTRO-C achieves nearly the same solve
time on the SOCP formulation, while ECOS is many times
slower. This result demonstrates that the common practice of
linearizing friction cones to achieve faster MPC solve times
may be unnecessary with better-optimized solvers.

Finally, we note that non-convex versions of this problem
have also been successfully demonstrated using the IPOPT
solver [30]. Because ALTRO is a general nonlinear solver,
it can also seamlessly handle such non-convex extensions
without having to change solvers, and while maintaining high
performance.

D. Rocket Soft Landing

The rocket soft-landing problem involves landing a vehicle
on the surface of a planet while respecting actuator and
safety constraints. Several previous works have formulated
this problem as a convex second-order cone program [12],
[13], [31], [32]. It is standard to decompose the MPC problem
into two separate controllers: a long-horizon controller for the
translation dynamics, and a short-horizon attitude controller.
Here we consider the translation problem, adapted from [13],

minimize
X,U

N∑
k=1

‖xk − x̄k‖2Qk
+

N−1∑
k=1

‖uk‖2R (11a)

subject to xk+1 = Axk +Buk + b, (11b)
x1 = xinit, (11c)
‖uk‖2 ≤ umax, (11d)∥∥[uk,x uk,y]T

∥∥
2
≤ αuuk,z, (11e)∥∥[xk,x yk,y]T

∥∥
2
≤ αxxk,z (11f)

where xk ∈ R6, uk ∈ R3 =
[
uk,x uk,y uk,z

]T
, and the

dynamics are approximated by a point mass subject to gravity.
The three second-order cone constraints (11d), (11e), and (11f)
enforce a maximum thrust, thrust angle, and a safe glideslope
region, respectively.
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Fig. 4: Convergence comparison for conic solvers. The error
relative to a reference trajectory is shown as a function of
solver tolerance.

With a horizon length of 20 time steps, ALTRO-C was
roughly ten times faster than ECOS, converging in under 4
iterations and 0.37 ± 0.33 ms, compared to 3.80 ± 0.18 ms
for ECOS. Fig. 4 highlights the convergence characteristics
of ALTRO-C compared to several other state-of-the-art conic
solvers. A reference “ground-truth” solution was generated
using COSMO [15] with very tight tolerances, and the distance
to the ground-truth solution was computed for decreasing
solver tolerances. As shown, ALTRO-C converges extremely
quickly to a solution very close to the true solution, while
other solvers require much tighter tolerances (implying longer
solve times) to achieve similar results.

E. Grasp Optimization

Grasp optimization for robotic manipulators can be for-
mulated as an SOCP [14]. We model a two-finger robotic
manipulator grasping a box and tracking a reference trajectory.
The box is subject to contact forces from the gripper F 1 and
F 2 ∈ R3, and gravity Fg . The inward pointing normal vi for
the ith contact point is useful for separating the contact forces
into the tangential and normal components. The problem setup
is illustrated in Fig. 5.

Similar to (7), a quadratic cost function is used to penalize
distance from a reference trajectory. Contact forces are treated
as control inputs, and are subject to the following constraints:

∥∥(I − vik(vik)T )F i
k

∥∥
2
≤ µ(vik)TF i

k, i = 1, 2 (12a)

(vik)TF i
k ≤ fmax, i = 1, 2 (12b)

αk = Ckuk. (12c)

Equation (12a) enforces Coulomb friction, where∥∥(I − vi(vi)T )F i
∥∥
2

is the magnitude of the normal
component, (vi)TF i is the magnitude of the tangential
component, and µ is the coefficient of friction. Equation
(12b) bounds the normal force, and (12c) ensures that
the torques generate the pre-specified reference angular
acceleration αk ∈ R3.



−2 0 2 4 6
−4

−2

0

2

4

Fg

v1

F1 F2

v2

Fig. 5: A free-body diagram and trajectory snapshots for a
manipulation task. F 1 and F 2 are the contact forces from the
gripper, and vi is the inward pointing normal for the object at
the ith contact point. Fg is the gravitational force. The object
pose is shown in blue, contact forces are shown in red, and the
gravity vector is in green. Snapshots that are more transparent
correspond to earlier time steps in the trajectory.

10 20 30 40 50

0

10

20

30

40

Horizon Length (N )

C
om

pu
ta

tio
n

Ti
m

e
(m

s) ALTRO-C
ECOS

COSMO
Mosek

Fig. 6: Computation time comparison for the grasp optimiza-
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To ease visualization, the reference trajectory in Fig. 5
was kept planar, but could easily be extended to 3D. The
performance of ALTRO-C was compared to several other
conic solvers for different MPC horizon lengths N . As shown
in Fig. 6, while all solvers exhibit linear scaling with respect to
N , ALTRO-C exhibits the fastest run-times—averaging 0.24
ms for 11 knot points and 1.0 ms for 51 knot points.

VI. CONCLUSIONS

We have presented ALTRO-C, a conic augmented La-
grangian method for solving model-predictive control prob-

lems with general convex conic constraints. The method was
implemented by modifying the open-source ALTRO solver
and demonstrated on several benchmark control problems.
ALTRO-C fully exploits the structure of trajectory optimiza-
tion problems, achieves fast convergence to moderate toler-
ances, and offers good warm-starting capabilities, making it
ideal for MPC applications. Comparisons to several QP and
SOCP solvers show that our algorithm delivers state-of-the-art
performance on small-to-medium-size MPC problems and is
suitable for many real-time control applications. Additionally,
unlike other specialized conic solvers, ALTRO-C can be
readily applied to nonlinear and non-convex problems.

Future work will investigate extending ALTRO-C to work
with additional cones, including the semi-definite cone. Fur-
ther benchmarking results against other state-of-the-art MPC
solvers, such as the newly released HPIPM [8], are also
left for future work. While the current Julia implementation
offers significant benefits, a lightweight C implementation of
the algorithm could also be useful for resource-constrained
embedded applications.
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