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Markov Chain Monte Carlo Multi-target Tracking
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I. MOTIVATION

State estimation of a single object from noisy measurements
is a very well-studied problem and has been the principal
area of focus for the current class. However, in many realistic
applications there exists more than one object whose state
should be tracked. Under some circumstances, measurements
of the targets can be unambiguously associated with their
target origin, in which case the issue of tracking multiple
targets decomposes into several simultaneous and independent
single-object state estimation problems which can be tackled
using the algorithms discussed in class. Unfortunately, many
scenarios exist wherein the association between measurements
and their sources is ambiguous. This has given rise to the field
of multiple target tracking (MTT). MTT algorithms have many
important, modern applications in areas such as surveillance,
defense, and mobile robot navigation. Our motivation for this
project is to expand the principles taught in class to more
complex scenarios where the issue of data association must
be addressed.

The structure of the paper is as follows: (TODO)

II. OBJECTIVE

The objective of this project is to implement one or more
forms of the multiple hypothesis tracking (MHT) algorithm
on a simulated scene of mobile robots.

III. RELATED WORK

Many approaches to solving the challenging MTT problem
have been investigated throughout the years. Classical ap-
proaches decompose the problem into two different problems:
data association and state estimation. Assuming that the data
association is correct, estimating the state using Kalman [2]
filters and its derivatives is straightforward. At the intersection
of these two problems, however, lies the heart of the challenge
of MTT, for each stage relies upon the other. It is desirable
that the problem of data association be informed by accurate
state estimation and reason about the effect of data association
on estimating the state over time, since and incorrect data
association at one time step may have significant impact on
estimation of the state many time steps later.

MTT algorithms must tackle at least five key challenges.
First, the surveillance region will contain an unknown number
of targets because targets die as they exit and are suddenly born
as they enter the surveillance region. Next, one most model the
interaction of targets because they will certainly interact and
rules of physics govern collisions and the simultaneous occu-
pation of free space. Third, the dynamics models of each target
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must be accounted for (often known as system identification)
because automobiles and humans will move quite differently
through a surveillance region. The last two challenges derive
from measurement ambiguity: unknown data association, as
we remarked earlier, and potentially false sensor readings that
could lead to spurious detections(false alarms).

A goal of MTT is to partition sensor data into sets of
observations, “tracks,” that are produced by the same target.
Once tracks are formed and confirmed, quantities of interest,
including target velocity, future predicted position, and target
classification, can be computed for each track.

A. Multiple Hypothesis Tracking

The key principle of multiple hypothesis tracking (MHT)
is that difficult data association decisions should be deferred
until more data are received. Gating is a common method
for eliminating observations from consideration to all previous
tracks by selecting a maximum acceptable measurement plus
tracking error magnitude [8].

B. Classical MHT

MHT algorithms date back to Reid’s original 1979 paper
[5]. Reid proposes a recursive algorithm that addressed the
dependence of data association on subsequent data by formu-
lating the problem in terms of joint hypotheses, for hypothesis
that a single measurement corresponds to a particular target.
By evaluating the tree of branching hypotheses, Reid arrives
at a recursive algorithm that allows data association based
on subsequent, as well as previous, measurements, known as
amulti-scan approach. On the other hand, a single-scan method
can utilize only the current set of measurements. Reid’s paper
has become the foundational paper for the MHT approach to
MTT.

Another approach to MTT is referred to as the Joint
Probabilistic Data Association (JPDA) method, as proposed by
Bar-Shalom in 1975 [4]. In this approach, each measurement
is assigned a probability of association with each target.
This increases the Kalman filter covariance to account for
association uncertainty. However, this tends to exacerbate
the problem since an increased covariance allows even more
measurements to be associated with a particular target. It also
tends to coalesce closely spaced targets into a single target
[8].

Many of the papers over the subsequent decades focused on
refining these approaches. Blackman’s survey paper provides
a broad overview of different approaches and focuses on
highlighting the benefits of the MHT approach originally
proposed by Reid, and proposes combining the MHT method
with multiple filter models, such as the interacting multiple
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model (IMM) [8]. The MHT relies upon generating new,
feasible hypotheses from the previous hypotheses. Of course,
there is a potential combination explosion in the number
of hypotheses (and tracks within hypotheses), so clustering,
hypothesis and track pruning, and track merging are required.

C. Optimization-based MHT

Tracking can also be framed as an optimization problem
with constraints, solved via Lagrangian relaxation [8]. The
objective function of interest to be maximized is the hypoth-
esis score, i.e. the sum of all track scores in a hypothesis.
Constraints are needed in order to ensure that no tracks in the
hypothesis share the same observations, or, in other words,
that an observation can be used by at most a single track.
Lagrange multipliers are used to approximate the constraints,
ensuring that constraint violations are given high costs.

D. Sequential Monte Carlo

The Probability Hypothesis Density (PHD) filter propagates
only the first moment (or PHD) instead of the full multi-
target posterior. Vo et al. [7] propose Sequential Monte Carlo
(SMC) implementations for both the Bayes multi-target filter
and the Probability Hypothesis Density filter. They do so in the
context of Finite Set Statistics (FISST), where random finite
sets represent multi-target states and observations, in order to
use a measure theoretic and random finite set framework.

E. Bayesian MHT

Other approaches focus on formulating the problem within a
Bayesian framework. Mori et. al. derived a Bayesian approach
for cases where targets do not have a priori identification [6].
In more recent years emphasis has shifted to using numerical
techniques for estimating the joint multitarget probability
density (JMPD), primarily using particle filters, where each
particle represents a single joint hypothesis as set forth in
the MHT formulation [10], [11]. Stone et. al. have compiled
many of these approaches within a standardized mathematical
approach in their book, which will be serving as a primary
reference for this project [13].

Khan et al. [9] use a Markov Chain Monte Carlo (MCMC)
framework with the Metropolis-Hastings and an MRF motion
prior. Oh et al. [12] present a single-scan MCMCDA algorithm
that approximates JPDA in polynomial time, along with a
multi-scan MCMC-DA Bayesian algorithm that can handle
detection failures, false alarms, and track initiation and ter-
mination. Kim et al. [14] use modern object detectors built
with convolutional neural networks to provide input to their
multi-hypothesis tracker, focusing on an appearance model,
rather than motion model.

For our project, we base our approach off of the MCMC-DA
Bayesian algorithm by Oh et. al. [12].

IV. PROBLEM FORMULATION

A. General Formulation of MTT

The general MTT problem can be formulated as follows:
let T ∈ Z+ be the duration of surveillance, and K be the

unknown number of targets to track within a surveillance
region R with volume V .. Each object k moves in R for an
unknown duration [tki , t

k
f ] ⊆ [1, T ]. Each target k disappears

with probability pz and is detected with probability pd at each
time step. The apparition of new targets is defined by a Poisson
distribution with parameter λbV , where λb is the birth rate of
new targets per unit time, per unit volume. False alarms are
also generated with a Poisson distribution, with parameter λf .

Each target moves with dynamics xkt+1 = F k(xkt ) and re-
ports observations according to yjt = Hj(xkt ), where yjt ∈ Rny

is the jth observation at time t for j = 1, . . . , nt, for nt
observations of dimension ny .

The multi-target tracking problem is then to estimate K,
{tki , tkf}, and {xkt : tki ≤ t ≤ tkf} for k = 1, . . . ,K from
observations.

B. Current Problem Formulation

For this project we will consider a simplification of the
general problem given in Section IV-A. We will assume
the number of targets K is known, and assume knowledge
of controls and dynamics of each robot. All robots report
one measurement at each time, with no spurious detections.
Robots do not leave or enter the observation region R during
the observation time T . This basically reduces the problem
to the issue of data association, which is the main focus
of this project. The observation window is set a size of
x ∈ [−10, 10], y ∈ [−10, 10].

The dynamics of each robot will be modeled as differential
drive robots with Gaussian white noise with covariance Q.
The controls are assumed, in general, to be time-varying.

The measurement model consists of two range measure-
ments from beacons at (−10,−10) and (10,−10), with Gaus-
sian white noise with covariance R. See Figure 1 for an image
from the simulator.

Fig. 1. Still image capture of “arena” simulator. The black and red dots
represent the true and estimated location of each robot, respectively. The large
blue markers in the corners represent the location of the beacons.

C. Optimal Bayesian Filter Formulation

The problem stated previously can be phrased within a
Bayesian framework, similar to what we have seen in class. Let
Xt = (X1

t , . . . , X
K
t ) be the joint state at time t. We assume

we have the prior distribution P (X0).
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Prediction Step: The prediction step can be written

P (Xt|y1:t−1) =

∫
P (Xt|Xt−1, y1:t−1)P (Xt−1|y1:t−1)dXt−1

=

∫
P (Xt|Xt−1)P (Xt−1|y1:t−1)dXt−1

(1)
where P (Xt|Xt−1) is the dynamics model, and the step from
the first to second line is given by the Markoviantiy of the
problem formulation.

Measurement Update: The measurement update is given
using an application of Bayes rule:

P (Xt|y1:t) =
P (yt|Xt, y1:t−1)P (Xt|y1:t−1)∫
P (yt|Xt, y1:t−1)P (Xt|y1:t−1)dxt

(2)

however, for the multi-target tracking problem the data asso-
ciation is unknown, which means the measurement likelihood
P (yt|Xt, y1:t−1) is not available. To compensate for this,
we introduce a latent variable ωt ∈ Ωt, which represents a
possible set of associations between nt measurements and K
targets, and Ωt represents the set of all possible associations.
Using the theorem of total probability, we can then compute
the measurement likelihood as follows:

P (Xt|y1:t) =
∑
ωt∈Ω

P (Xt|ωt, y1:t)P (ωt|y1:t) (3)

where

P (Xt|ωt, y1:t) =
P (yt|Xt, ωt, y1:t−1)P (Xt|y1:t−1)∫
P (yt|Xt, ωt, y1:t−1)P (Xt|y1:t−1)dXt

(4)
The term P (Xt|ωt, y1:t) can easily computed since ω

specifies the association between measurements and targets.
However, the sum over all ωt ∈ Ωt has exponentially terms
and quickly becomes intractable. Additionally, this causes the
posterior P (Xt|y1:t) to become exponentially more complex
after each update step. The two filters presented in the next
section are approximations of the optimal Bayes filter pre-
sented in this section.

V. METHODOLOGY

Two different separate filters were implemented to tackle
the multi-target tracking problem. The first was a Multiple-
Hypothesis Kalman-Filter (MHKF), similar to the approach
taken in one of the problem sets. The second was the MCMC-
DA filter proposed in [12]. An overview of the implementation
of each filter is given below.

A. MHKF

The key innovation behind the MHKF is that rather than
keeping a Gaussian state object for each target, the states
of all K targets are concatenated into a single Gaussian
object comprising a single distribution. In practice, MHKF
algorithms preserve a set of Nt Gaussian objects, where each
Gaussian object represents a possible hypothesis regarding
associations (matching measurements with targets to form
tracks). A new set of Gaussian objects is created at each

time step to demonstrate all possible new permutations of
associations, and in order to prevent O(K!) branching, this set
is quickly pruned to the most probable hypotheses (Gaussian
objects).

The MHKF can be seen as employing a Gaussian-Mixture-
Model (GMM) in order to estimate the joint state Xt. The
estimate at each time step is represented by the GMM:

p(xt|y1:t) =
∑

αi
t|tN (µi

t|t,Σ
i
t|t) (5)

Prediction Step: For the general form of MHKF, we assume
M transition different transition models. Summing over these
transition models yields the following:

p(xt+1 | y1:t) =

M∑
j

Nt∑
i

βjαj
t|tN (µij

t+1|t,Σ
ij
t+1|t) (6)

where N (µij
t+1|t,Σ

ij
t+1|t) is the Kalman Filter (KF) prediction

step. For our simulation, the dynamics remained the same,
but we assumed we didn’t know the association of the control
signal to each target. Therefore, M = K.

Measurement Update: For the measurement update, we
assume ny measurements are received, again with unknown
association to targets. The prediction step is given as:

P (Xt+1|yt:t+1) =

L∑
i

MNt∑
k

ηγiαk
t+1|tN (µik

t+1|t+1,Σ
ik
t+1|t+1)

(7)
where N (µik

t+1|t+1,Σ
ik
t+1|t+1) is the KF measurement update,

and

ᾱt+1|t+1 =ηγiα
k
t+1|t

=γiα
k
t+1|tp

ik(yt+1|y1:t)
(8)

and the score is effectively the probability of seeing the new
measurement given your previous measurements, computed
using the Gaussian probabiility density function, centered at
your dynamics-propagated prediction of the mean, which we
call

pik(yt+1 | y1:t) = N (Ci
t+1µ

k
t+1|t), R

i +Ci
t+1Σt+1|t(C

i
t+1)T )

(9)
the measurement likelihood posterior. This is the state after
dynamics propagation, meaning µk

t+1|t = g(µk
t ), and Ci

t+1 is
the ith permutation matrix.

After each time step, the number of Gaussian components
expands in a combinatorial manner. To simplify the problem,
we take the Nt Gaussians with the highest weights and prune
the rest. In our formulation, we chose Nt = 3 hypotheses,
and we note that it is preferable to keep as hypotheses many
as possible given your available time and memory resource
budget because this will render the approximation closer to
the optimal Bayesian filter.

B. Markov Chain Monte Carlo Data Association (MCMC-DA)

One of the principle issues with the MHKF filter is that
is tracks the joint state Xt, meaning a single state which
represents the concenated states of all K objects in the
surveillance region, which clearly grows in size proportional to
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the number of targets tracked. The filter operations, especially
matrix inversions, begin to take a heavy toll on computation
time as the number of targets grows, resulting in an explosion
in computation time (as is shown in Section VI). In order to
alleviate this issue, the MCMC-DA algorithm makes a key
independence assumption:

P (Xt|y1:t) = P (X1
t , . . . , X

K
t |y1:t) ≈

K∏
k=1

P (Xk
t |y1:t) (10)

This assumption allows the joint state to be approximated by
K independent filters. However, the exponential complexity in
estimating the association between measurements and targets
still applies. However, if it can be accurately estimated, the
tracking problem reduces to a straight-forward filtering prob-
lem with K independent filters. The focus of this algorithm,
as will be shown, is therefore to accurately and efficiently
estimate the data association.

One of the convenient aspects of the MCMC-DA algorithm
is that it can work with any type of independent, single-target
filter, such as KF, EKF, UKF, or particle filter. For this project,
we implemented the algorithm with an EKF.

The value of the MCMC-DA algorithm lies in two key in-
novations: (1) casting the problem as bipartite graph matching,
and (2) efficient sampling via Markov Chain Monte Carlo.

1) Data Association as a Bipartite Graph: MCMC-DA
introduces an alternative perspective to data association: the
problem is simply bipartite graph matching.

In particular, we can encode the association information into
a bi-partite graph G = (U, V,E), where U = {yjt , 1 ≤ j ≤ N}
is the set of validated observations, V = {k, 1 ≤ k ≤ K}
is a vertex set of targets, and E = {(u, v) : u ∈ U, v ∈
V, P̂ v(u|y1:t−1) ≥ δu} are the edges indicating the validated
measurements, where N ≤ ny is the number of validated
measurements. An example from [12] is given in Figure 2,
and examples of feasible partitions are given in Figure 4.

Fig. 2. (a) An example of measurement validation with a 2D Gaussian
estimate of Pk(y|y1:t−1), with K = 3 targets (triangles) and N = 8
measurements (disks). (b) Measurement validation from (a) encoded as a bi-
partite graph, where an edge between yj and k indicates that a validated
measurement between measurement j and target k. Taken from [12].

Not all bijective matchings between U and V will be likely.
We can keep only the likely edges, and consider this to be the
distribution representing the set of all possible graphs from
which we can sample. Of course, one would want to sample
efficiently from such a large set instead of enumerating all
possible assignments.

C. Markov Chain Monte Carlo (MCMC) Preliminaries

MCMC is a method for approximating a complicated distri-
bution via taking transitions in a Markov chain between states
[1] [3]. We do not always accept high-probability transitions,
which allows us to sample more than just the mode.

Fig. 3. A visualization of states in a Markov chain. After a burn-in period
for which the chain can mix, Monte Carlo statistics are accumulated about
instantiations of the distribution.

In the data association scenario, transitioning between as-
signment states denotes modifying the edges E of the graph
G. Three moves exist: (1) switching the source or sink of an
edge, (2) adding an edge to the graph, (3) or deleting an edge
from the graph.

Fig. 4. Examples of feasible partitions of the graph shown in Figure 2(b).
Movement from (a) to (b) is a an example of a switch move, and (b) to (c)
a delete move.

We now describe the steps of the MCMC-DA algorithm.
Prediction Step: The first step is, naturally, the prediction

step. The prediction step on each target can be written:

P̂ (Xk
t |y1:t−1) :=

∫
P (Xk

t |xkt−1)P̂ (xkt−1|y1:t−1)dxkt−1 (11)

which is simply the prediction step for each of the K inde-
pendent filters.

Measurement Validation: The second step in the MCMC-
DA algorithm reduces the complexity of the data association
problem by eliminating unlikely associations from being con-
sidered. This is referred to as measurement validation. Let
P̂ k(Y j

t |y1:t−1) be the probability density of having obser-
vation Y j

t given the previous measurements, assuming the
measurement originated from target k. Then, for each (j, k)
pair compute

P̂ k(Y j
t |y1:t−1) =

∫
P̂ k(Y j

t |xkt )P (xkt |y1:t−1)dxkt (12)

For the linear-Gaussian models used in the current project, this
is identical to the measurement likelihood posterior given in
Eq. 9. Measurement j is validated for target k if and only if

P̂ k(yjt |y1:t−1) ≥ δk (13)

where δk is an appropriate threshold, and a tuning parameter
for the algorithm. For our simulation, we found values of 0.05
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to work well when paired with an R matrix with diagonal
components of 0.5. The δk values essential act as a threshold
on the distance between measurements and the estimated
location of the robot that causes them to be considered
possible matches. Therefore, measurements far away from the
estimated location will not be considered. It is also important
to note that, given appropriate thresholds, when the targets are
far apart only one measurement per target is validated, and
the problem simplifies significantly since the data association
problem becomes trivial. The computation time is tightly
related to the number of validated measurements per target.

Measurement Update: The measurement update for the
MCMC-DA algorithm is where nearly all of the work is really
accomplished. Here, we make use of the latent variable ω
introduced in Eq. 3, which we now more formally define. Let
ω = {(j, k)} represent a set of feasible associations between
measurement j and target k for nt measurements and K
targets. Let Ωt = {ω} be the set of all feasible associations at
time t. An association event ω is defined to feasible when:

1) for each (j, k) ∈ ω, yjt is validated for target k
2) an observation is associated with at most one target, and
3) a target is associated with at most one observation

To compute Ω in practice, we created two lists of sets:
uadj of length N and vadj of length K. The jth element
of ujadj = {(u, v) : u = j} ∪ ∅, and the kth element of
ukadj = {(u, v) : v = k}∪∅, which are the edges leaving each
vertex, joined with a null set to capture the option of a vertex
not having any assigned edges. We then define two sets: uω
and vω , which are the Cartesian products of lists uadj and
vadj , respectively. These capture all possible permutations of
feasible edges from either U or V . The elements of uω will
all be of length N and the elements of vω will be of length
K, one for each measurement or target. We then define uω̃
and vω̃ , where ujω̃ = {(u, v) ∈ ujω : (u, v) 6= ∅}, and the
elements of vω̃ are similarly defined. These sets contain sets
of edges, each one representing a possible association event.
We can then calculate Ωt, the list of all feasible association
events, as Ωt = uω̃ ∪ vω̃ .

We can re-write Eq. 3 as

P̂ (Xk
t |y1:t) =

N∑
j=0

βjkP̂ (Xk
t |ωjk, y1:t) (14)

Given ωjk (the data association), calculating the posterior
becomes a straight-forward application of the measurement
update for the independent filter of choice. The association
probability βjk, on the other hand, is defined by the distribu-
tion

βjk = P̂ (ωjk|y1:t) =
∑

ω:(j,k)∈ω

P̂ (ω|y1:t) (15)

which requires a summation over exponentially many asso-
ciation events. Here we employ Markov Chain Monte Carlo
(MCMC) sampling to efficiently sample from the posterior
distribution P̂ (ω|y1:t) and calculate βjk.

MCMC Sampling Step: Prior to running the MCMC sam-
pling steps, it is convenient to calculate and store

∏
= {π(ω) :

∀ω ∈ Ωt}, which is used as the proposal distribution for the
acceptance probability in the Metropolis-Hastings algorithm.
This is calculated as:

P (ω|y1:t) ≈ π(ω) =
1

Z
λ
N−|ω|
f p

|ω|
d (1−pd)K−|ω|

∏
(u,v)∈ω

P̂ v(u|y1:t−1)

(16)

Algorithm 1: MCMC-DA(G,nmc, nbi,
∏

)

β̂jk = 0,∀j, k
sample ω(0) randomly from Ωt

for n = 1 to nmn do
w(n) = MCMC-step(G,ω(n−1),

∏
)

if n > nbi then
foreach (j, k) ∈ ω(n) do

β̂jk+ = 1/(nmc − nbi)
end

else
end

end
Result: β̂jk

Algorithm 2: MCMC-step(G,ω,
∏

sample Z from Unif[0,1]
if Z < 1/2 then

ω′ = ω
else

sample e = (u, v) ∈ E uniformly at random
if e ∈ ω then

ω′ = ω − e // deletion
else if both u and v are unmatched in ω then

ω′ = ω + e // addition
else if exactly one of u and v is matched in ω and e′

is the matching edge then
ω′ = ω + e− e′ // switch

else
ω′ = ω

end
ω = ω′ with probability A(ω, ω′)

VI. RESULTS

VII. QUANTITIVE EVALUATION

We now compare the quantitative performance of the two
algorithms.
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Fig. 5. Actual and estimated state values for a simulation with 5 robots, run
with the MHKF filter.

Fig. 6. Actual and estimated trajectories for a simulation with 5 robots, run
with the MHKF filter.

Fig. 7. Weights of the MHKF filter at each time step for a simulation with
5 robots

Fig. 8. Actual and estimated state values for a simulation with 5 robots, run
with the MCMC-DA filter

A. Robot Dynamics

We use the following control laws for the K = 3 robot
scenario:

u1(t) =
[
cos(0.1 · t) sin(0.1 · t)

]
u2(t) =

[
−cos(0.2 · t) sin(0.2 · t)

]
u3(t) =

[
cos(0.1 · t) sin(0.2 · t)

]
u4(t) =

[
t t

]
u5(t) =

[
sin(t) + 0.4 cos(t)

]
(17)

B. Tracking Error

We note that when the measurement covariance R is
increased above 0.5I2×2, with our δk = 0.05 parameter,
no measurements pass the measurement validation threshold.
Thus, in all experiments we set R ≤ 0.5I2×2. However, as
Table I shows, varying R within this range did not matter
significantly, as data association for nearby robots can still be
challenging.
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Fig. 9. Actual and estimated trajectories for a simulation with 5 robots, run
with the MHKF filter.

Fig. 10. We visualize computation time per filter step spent versus the number
of robots tracked. The computational advantages of the MCMC-DA filter over
the MHKF filter are evident. Note: y-axis is log-scale.

3 Targets 4 Targets 5 Targets
R = 0.5I2×2

MHKF 1.0948 - -
MCMC-DA 0.3816 0.62615 0.5627
R = 0.1I2×2

MHKF 1.0947 - -
MCMC-DA 0.43945 0.31867 -

TABLE I
WE REPORT THE AVERAGE L2 NORM ERROR BETWEEN THE FILTER’S

PREDICTED ROBOT LOCATION AND THE ACTUAL ROBOT LOCATION
(SUMMED ACROSS ALL K ROBOTS) PER TIMESTEP. RESULTS ARE

AVERAGED OVER 10 TRIALS, FOR A 10 SECOND TRACKING PERIOD WITH
δt = 0.01 SECOND.

VIII. CONCLUSION

In conclusion, the performance of both filters is impressive
and both perform qualitatively very well.

However, the MCMC-DA algorithm is advantageous in
runtime complexity and in mean tracking error (See Figure
10, Table I) when tracking a large number of objects (K > 4).
This can be attributed to its use of an independent filter on each
target, whereas MHKF is forced to model a joint state. The
MCMC-DA runtime appears linear in the number of targets.

We make our implementation publicly available at https:
//github.com/bjack205/MultiRobotTracking

IX. FUTURE WORK

The MHKF and MCMC-DA formulations are just two
of many MTT formulations that exist today. Complicated
distributions, such as the concatenated (joint) state of all robots
that the MHKF models in each hypothesis, could also be
approximated with a non-Gaussian object such as a Particle
Filter.

We leave to future work the implementation of the Prob-
ability Density Hypothesis (PHD) filter , a FSST Sequential
Monte Carlo filter, and a comparison with the Particle Filter for
our MTT scenario. In addition, we also leave a comparison of
ID F1 score, which may be more informative about the data
association performance than the average error per timestep
that we present in Table I.

We implemented a single-scan MCMC-DA filter, but a
multi-scan algorithm would certainly be advantageous. Our
simulation arena environment does also not account for the
birth and death of targets, and we did not experiment with
spurious measurements, dropped measurements, or uncertain
robot motion models. We leave all of these extensions to future
work.
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