
ALTRO: A Fast Solver for Constrained Trajectory Optimization

Taylor A. Howell1∗, Brian E. Jackson1∗, and Zachary Manchester2

Abstract— Trajectory optimization is a widely used tool with
many important applications in robotic motion planning and
control. However, most existing algorithm implementations fall
into one of two categories: either they rely on general-purpose
off-the-shelf nonlinear programming solvers that are numeri-
cally robust and capable of handling arbitrary constraints but
tend to be slow, or they use custom numerical methods that
are fast but lack robustness and have limited or no ability to
deal with constraints. This paper presents ALTRO (Augmented
Lagrangian TRajectory Optimizer), a novel algorithm for solv-
ing constrained trajectory optimization problems that bridges
this gap by offering fast convergence, numerical robustness,
and the ability to handle general nonlinear state and input
constraints. We demonstrate ALTRO’s capabilities on a set of
benchmark motion-planning problems and offer comparisons
to the standard direct collocation (DIRCOL) method.

I. INTRODUCTION

Trajectory optimization is a powerful tool for motion plan-
ning, enabling the synthesis of dynamic motion for complex
underactuated robotic systems. This general framework can
be applied to robots with nonlinear dynamics and constraints
where other motion planning paradigms—such as sample-
based planning, inverse dynamics, or differential flatness—
are impractical or ineffective.

Numerical trajectory optimization algorithms all solve
some variation of the following optimization problem,

minimize
x0:N , u0:N−1

`f (xN) +

N−1∑
k=0

`(xk, uk)

subject to xk+1 = f(xk, uk),

gk(xk, uk) ≤ 0,

hk(xk, uk) = 0,

(1)

where `f and ` are the final and stage cost functions, xk and
uk are the state and input control variables, f(xk, uk) is the
discrete dynamics function, and gk(xk, uk) and hk(xk, uk)
are the inequality and equality constraints, potentially includ-
ing initial and final conditions, at time step k.

“Direct” methods transcribe states and inputs as decision
variables and solve (1) using general-purpose nonlinear pro-
gramming (NLP) solvers such as SNOPT [1] or Ipopt [2],
and tend to be versatile and robust. It is straight forward to
provide an initial state trajectory to the solver in such meth-
ods, even if it is dynamically infeasible. Direct transcription
(DIRTRAN) [3] and direct collocation (DIRCOL) [4] are
common direct algorithms.

1Department of Mechanical Engineering, Stanford University, USA
{thowell,bjack205}@stanford.edu

2Department of Aeronautics and Astronautics, Stanford University, USA
zacmanchester@stanford.edu

∗These authors contributed equally to this work

Alternatively, “indirect” methods leverage the structure of
(1) to solve a sequence of smaller sub-problems using Dy-
namic Programming. These are anytime algorithms, meaning
they are always strictly dynamically feasible, allowing state
and input trajectories at any iteration to be used in a tracking
controller. However, it is often difficult to find a suitable
initial guess for the control trajectory. Historically, indirect
methods have been considered less robust and less suitable
for reasoning about general state and control constraints
but tend to be fast and amenable to implementation in
embedded systems. Methods include Differential Dynamic
Programming (DDP) [5] and Iterative LQR (iLQR) [6], as
well as various shooting methods [7].

Several efforts have been made to incorporate constraints
into DDP methods: Box constraints on control inputs [8] and
stage-wise inequality constraints on the states [9], [10] have
been handled by solving a constrained quadratic program
(QP) at each step of the backward pass (BP). A projection
method was devised that satisfies linearized terminal state
and stage state-input constraints [11]. Augmented Lagrangian
(AL) methods have been proposed [12], including hybrid
approaches that also solve constrained QPs for stage state-
input constraints [10], [13]. Mixed state-input constraints
have also been handled using a penalty method [14].

In this paper we present ALTRO (Augmented Lagrangian
TRajectory Optimizer), a trajectory optimization algorithm
that combines the best characteristics of both direct and indi-
rect methods, namely: speed, small problem size, numerical
robustness, handling of general state and input constraints,
anytime dynamic feasibility, and infeasible state trajectory
initialization. Using iLQR in an augmented Lagrangian
framework to handle general state and input constraints, we:
1) derive a numerically robust square-root formulation of
the backward pass, 2) introduce a method for initializing
an infeasible state trajectory, 3) formulate the minimum
time problem, and 4) present an anytime projected Newton
method for solution polishing.

The paper is organized as follows: Section II provides
background for iLQR and AL methods. Section III derives
the constrained trajectory optimization algorithm ALTRO.
Comparisons between ALTRO and DIRCOL are performed
for several motion-planning problems in Section IV. Finally,
we summarize our findings in Section V.

II. BACKGROUND

Notation: For a function f(x, u), we define fx ≡
∂f(x, u)/∂x|xk,uk

, fxx ≡ ∂2f(x, u)/∂x2|xk,uk
, and fxu ≡

∂2f(x, u)/∂x∂u|xk,uk
. We also define a vertical concatena-

tion, (A,B,C) ≡ [ATBTCT]T .

A. Iterative LQR

Iterative LQR (Algorithm 1) minimizes a general cost
function,

J(X,U) = `f (xN) +

N−1∑
k=0

`(xk, uk), (2)

subject to the nonlinear dynamics,

xk+1 = f(xk, uk), (3)

where x ∈ Rn is the system state, and u ∈ Rm is a
control input. The dynamics constraints are handled implic-
itly using an initial state x0 and nominal control trajectory,
U = {u0, . . . , uN−1}, to simulate the state trajectory X =
{x0 . . . , xN}.

The backward pass (BP) (Algorithm 2) is derived by
defining the optimal cost-to-go, Vk(x), with the recurrence
relationship,

VN (xN) = `f (xN) (4)
Vk(xk) = min

uk

{`(xk, uk) + Vk+1(f(xk, uk))} (5)

= min
uk

Qk(xk, uk), (6)

where Qk(xk, uk) is the action-value function. To make the
dynamic programming step tractable, we take a second-order
Taylor expansion of Vk(xk),

δVk(xk) ≈ pTk δxk +
1

2
δxTk Pkδxk, (7)

and linearize the dynamics, resulting in the optimal terminal
cost-to-go,

pN = ∂`f (x)/∂x|xN
(8)

PN = ∂2`f (x)/∂x2|xN
. (9)

The relationship between pk, Pk and pk+1, Pk+1 is derived
by expanding Qk,

δQk =
1

2

[
δxk
δuk

]T [
Qxx Qxu
Qux Quu

] [
δxk
δuk

]
+

[
Qx
Qu

]T [
δxk
δuk

]
,

(10)
where the block matrices are,

Qxx = `xx +ATk Pk+1Ak (11)

Quu = `uu +BTk Pk+1Bk (12)

Qux = `ux +BTk Pk+1Ak (13)

Qx = `x +ATk pk+1 (14)

Qu = `u +BTk pk+1, (15)

and Ak = ∂f(x, u)/∂x|xk,uk
, Bk = ∂f(x, u)/∂u|xk,uk

.
Minimizing (10) with respect to δuk gives a correction to

the control trajectory. The result is a feedforward term dk
and a linear feedback term Kkδxk. Regularization is added
to ensure the invertibility of Quu,

δu∗k = −(Quu+ρI)−1(Quxδxk+Qu) ≡ Kkδxk+dk. (16)

Substituting δu∗k back into (10), a closed-form expression
for pk, Pk, and the expected change in cost ∆Vk is found,

pk = Qx +KT
k Quudk +KT

k Qu +Qxudk (17)

Pk = Qxx +KT
k QuuKk +KT

k Qux +QxuKk (18)

∆Vk = dTkQu +
1

2
dTkQuudk. (19)

A forward pass (FP) (Algorithm 3) simulates the system
using the correction to the nominal control trajectory. A line
search is performed on the feedforward term dk to ensure a
reduction in cost.

Algorithm 1 Iterative LQR
1: Initialize x0, U, tolerance
2: X ← Simulate from x0 using U , (3)
3: function ILQR(X,U)
4: J ← Using X,U , (2)
5: do
6: J− ← J
7: K, d,∆V ← BACKWARDPASS(X,U)
8: X,U, J ← FORWARDPASS(X,U,K, d,∆V, J−)
9: while |J − J−| > tolerance

10: return X,U, J
11: end function

Algorithm 2 Backward Pass
1: function BACKWARDPASS(X,U)
2: pN , PN ← (8), (9)
3: for k=N-1:-1:0 do
4: δQ← (10), (11)-(15)
5: if Quu � 0 then
6: K, d,∆V ← (16), (19)
7: else
8: Increase ρ and go to line 3
9: end if

10: end for
11: return K, d,∆V
12: end function

B. Augmented Lagrangian

Augmented Lagrangian methods (Algorithm 4) minimize
a constrained optimization problem,

minimize
x

f(x)

subject to cI(x) ≤ 0,

cE(x) = 0

(20)

where I and E are the index sets corresponding to the
inequality and equality constraints, respectively. AL methods
solve (20) by converting it to an unconstrained optimization
problem and adding a penalty function to the Lagrangian,

LA(x, λ, µ) = f(x) + λT c(x) +
1

2
c(x)T Iµc(x), (21)

Algorithm 3 Forward Pass
1: function FORWARDPASS(X,U,K, d,∆V, J)
2: Initialize x̄0 = x0, α = 1, J− ← J
3: for k=0:1:N-1 do
4: ūk = uk +Kk(x̄k − xk) + αdk
5: x̄k+1 ← Using x̄k, ūk, (3)
6: end for
7: J ← Using X,U , (2)
8: if J satisfies line search conditions then
9: X ← X̄, U ← Ū

10: else
11: Reduce α and go to line 3
12: end if
13: return X,U, J
14: end function

Algorithm 4 Augmented Lagrangian
1: function AULA(x0, SOLVER, tolerance)
2: Initialize λ, µ, φ
3: while max(c) > tolerance do
4: Minimize LA(x, λ, µ) w.r.t. x using SOLVER
5: Update λ using (23), update µ using (24)
6: end while
7: return X,λ
8: end function

where Iµ is a diagonal matrix defined as,

Iµ,ii =

{
0 if ci(x) < 0 ∧ λi = 0, for i ∈ I
µi otherwise.

(22)

Holding λ and µ constant, an approximate minimizer of
the unconstrained optimization problem, x̂∗, is found. Taking
the gradient of (21) with respect x suggests the following
dual update,

λi+1 =

{
λi + µici(x̂

∗) i ∈ E
max(0, λi + µici(x̂

∗)) i ∈ I,
(23)

while the penalty is increased monotonically according to
the schedule,

µi+1 = φiµi, (24)

where φi > 1 is a scaling factor. The dual and penalty
variables are updated and the process is repeated until a
desired constraint tolerance is achieved. AL methods make
rapid initial progress, but suffer from slow constraint con-
vergence once the penalty is capped at a maximum finite
value [15]. DDP has previously been used to solve the inner
minimization of the AL method with good results [10], [12].

III. THE ALTRO ALGORITHM

ALTRO (Algorithm 6) comprises two stages: The first
stage solves (1) rapidly to a coarse tolerance using iLQR to
solve the unconstrained sub-problems within the AL frame-
work, similar to [12]. The optional secondary stage uses the
coarse solution from the first stage to warm start an active-
set Newton method that achieves high-precision constraint

satisfaction. We present several refinements and extensions
to constrained iLQR, as well as the novel projected Newton
stage for “solution polishing.”

A. Square-Root Backward Pass

For AL methods to achieve fast convergence the penalty
terms must be increased to large values, which can result
in severe ill-conditioning. To help mitigate this issue, we
introduce a numerically robust BP inspired by the square-
root Kalman filter [16].

We derive recursive expressions for the following upper-
triangular Cholesky factor matrices: S ≡

√
P ,Zxx ≡

√
Qxx,

and Zuu ≡
√
Quu. The terminal cost-to-go Hessian is,

SN ← QR
(

(
√
∂2`f (x)/∂x2|xN

,
√
IµN

cxN
)
)
, (25)

and the action-value expansion factorizations explicitly are,

Zxx ← QR
((√

`xx, Sk+1Ak,
√
Iµcx

))
(26)

Zuu ← QR
((√

`uu, Sk+1Bk,
√
Iµcu,

√
ρI
))
, (27)

where the 3rd and 4th terms come from taking the gradient of
the AL and adding regularization, respectively. The function
QR(·) returns the upper triangular factor of a QR factorization
(i.e. R). The gains K and d are expressed in square root form
as,

Kk = −Z−1uuZ−Tuu Qux (28)

dk = −Z−1uuZ−Tuu Qu, (29)

and the gradient and expected change of the cost-to-go are,

pk = Qx + (ZuuKk)T (Zuudk) +KT
k Qu +Qxudk (30)

∆Vk = dTkQu +
1

2
(Zuudk)T (Zuudk). (31)

The square root of the the cost-to-go Hessian (18)—which
frequently exhibits the worst numerical conditioning—is
derived by assuming the following upper triangular Cholesky
factorization,

P =

[
I
K

]T [
ZTxx 0
CT DT

] [
Zxx C

0 D

] [
I
K

]
=

[
Zxx+ CK

DK

]T [
Zxx + CK

DK

]
(32)

where,

C = Zxx−TQux (33)

D =
√
ZTuuZuu − CTC. (34)

S =
√
P can then be computed with a QR decomposition:

S ← QR

([
Zxx + CK

DK

])
. (35)

B. Infeasible State Trajectory Initialization

Desired state trajectories can often be identified (e.g.,
from sampling-based planners or expert knowledge), whereas
finding a control trajectory that will produce a desired state
trajectory is often challenging. State trajectory initialization
is enabled by augmenting the discrete dynamics with “infea-
sible” controls w ∈ Rn,

xk+1 = f(xk, uk) + wk, (36)

to make the system artificially fully actuated.
Given initial state and control trajectories, X̃ and U , the

initial infeasible controls W = {w0, . . . , wN−1} are com-
puted as the difference between the dynamics and desired
state trajectory at each time step:

wk = x̃k+1 − f(xk, uk) (37)

The optimization problem (1) is modified by replacing the
dynamics with (36). An additional cost term,

N−1∑
k=0

1

2
wTk Rinfwk, (38)

and constraints wk = 0, k=0, . . . , N−1 are also added to
the problem. As the algorithm converges to feasibility, the
solution approaches the same solution obtained by (1).

C. Minimum Time

Minimum time problems can be solved by considering τ =√
dt ∈ R as an input at each time step, T = {τ0, . . . , τN−1}.

The optimization problem (1) is modified to use dynamics,[
xk+1

ωk+1

]
=

[
f(xk, uk, τk)

τk

]
, (39)

with an additional cost,
N−1∑
k=0

Rminτ
2
k , (40)

and constraints ωk = τk, k=1, . . . , N−1 to ensure time
steps are equal so the solver does not exploit discretization
errors in the system dynamics. Upper and lower bounds can
also be placed on τk.

D. Projected Newton Method

The primal and dual trajectories Y ← X,U, λ (solved
to a coarse tolerance) from the first stage of ALTRO are
used to warm start an active-set projected Newton method
(Algorithm 5). This approach avoids the slow convergence
and numerical ill-conditioning exhibited by AL methods
when the penalty is made large. Typically, only one or
two Newton steps are required to achieve machine-precision
constraint satisfaction. To ensure strict satisfaction of the
dynamics and constraints, the search direction is projected
onto the constraint manifold by successively modifying the
search direction, δY , of the primal variables (denoted with
subscript p) at each iteration,

δYp ← δYp −HT (HHT)−1h (41)

Algorithm 5 Projected Newton
1: function PROJECTEDNEWTON(Y, tolerance)
2: Ȳ ← active-set projection of Y (41)
3: J̄ ← cost of Ȳ
4: while ‖∇L‖> tolerance do
5: Y ← Ȳ , J ← J̄ , α = 1
6: δY ← Newton search direction for Y
7: Ŷ ← active-set projection of Y + αδY
8: Ĵ ← cost Ŷ
9: if Ĵ satisfies line search conditions then

10: Ȳ ← multiplier projection of Ŷ (43)
11: J̄ ← cost of Ȳ
12: else
13: Reduce α, return to line 7
14: end if
15: end while
16: return Ȳ
17: end function

where h and H are the constraint violation and constraint
Jacobian, respectively. This direct formulation is strictly fea-
sible and is an anytime algorithm. Further, the dual variables
(denoted with subscript d) are updated with a projection that
minimizes the residual of the gradient of the Lagrangian at
each itteration:

r = ∇J +HTλ (42)

δYd = (HHT)−1Hr. (43)

Algorithm 6 ALTRO
1: procedure
2: Initialize x0, U, tolerances; X̃
3: if Infeasible Start then
4: X ← X̃ , W ← from (37)
5: else
6: X ← Simulate from x0 using U , (3),(36),(39)
7: end if
8: (X,U), λ← AULA((X,U), ILQR, tol.)
9: (X,U)← PROJECTEDNEWTON((X,U, λ), tol.)

10: return X,U
11: end procedure

IV. SIMULATION RESULTS

ALTRO’s performance is compared to the classic DIRCOL
method [4] on a number of benchmark motion-planning
problems. Each problem uses the following cost function:

J =
1

2
(xN − xf)TQf (xN − xf) (44)

+ dt

N−1∑
k=0

1

2
(xk − xf)TQ(xk − xf) +

1

2
uTkRuk,

is solved to constraint satisfaction cmax = 1e-4, and is
performed on a laptop computer with an Intel Core i7-6500U
processor and 8GB RAM. All algorithms are implemented in

Fig. 1. Runtime comparison for parallel park problem with (left) and
without (right) constraints.

the Julia programming language. Unless otherwise specified,
DIRCOL is provided the dynamically feasible state trajectory
computed during the initial forward simulation from ALTRO,
and solved using Ipopt [2].

A. Parallel Parking

A parallel parking problem for a Reeds-Shepp car [17] is
solved with Q = 0.001I3×3, R = 0.01I2×2, Qf = 100I3×3,
tf = 3s, and N = 51. Fig. 1 compares the runtime per-
formance of ALTRO and DIRCOL. ALTRO’s unconstrained
runtime is typically within a standard deviation of DIRCOL.
ALTRO solves faster than DIRCOL for the constrained
problem. Error bars are one standard deviation and were
collected using BenchmarkTools.jl.

A minimum-time trajectory is found by initializing both
ALTRO and DIRCOL with the control trajectory of a
solution with tf = 2s and enforcing −2 ≤ u ≤ 2.
Both algorithms converge to bang-bang control inputs and
a minimum time of 1.54s (Fig. 2). Importantly, DIRCOL
failed to solve the problem several times before successfully
finding a solution, likely due to the way Ipopt finds an initial
feasible solution. Additionally, the DIRCOL solution rapidly
oscillates at turning points, unlike the ALTRO solution.
While DIRCOL converged faster in this scenario, ALTRO
converged more reliably (Table I).

B. Car Escape

Escape (see Fig. 3) is a problem where standard con-
strained iLQR fails to find an obstacle-free path to the
goal. Using the same cost weights from the parallel parking
problem and N = 101, both ALTRO and DIRCOL are
initialized with a dynamically-infeasible collision-free state
trajectory guessed by interpolating the six points shown in
yellow in Fig. 3. ALTRO was able to converge to an optimal
collision-free path in less time and fewer iterations than
DIRCOL.

The projected Newton method is used to achieve high-
precision constraint satisfaction after reaching a coarse
threshold of maximum constraint violation cmax < 1e-3.
Fig. 4 demonstrates ALTRO* achieving cmax < 1e-8 in one

Fig. 2. Minimum Time Parallel Park. Fixed final time (tf = 2s) control
trajectories (black), ALTRO solution (orange), and DIRCOL solution (blue)
for both linear and angular velocity control inputs. ALTRO converges to a
smooth, bang-bang control, while DIRCOL exhibits rapid oscillation when
linear velocity goes to zero (corresponding to the corners where the car
pivots in place).

Fig. 3. Car Escape. The DIRCOL trajectory is blue, the (failed) constrained
iLQR solution is solid orange, and the ALTRO solution is the dashed orange
line.

Newton step. Runtime performance of this final solution-
polishing step is currently relatively slow: The total runtime
for ALTRO* is 1.398s (0.617s for the first stage), but
should be dramatically improved with a more careful sparse
matrix implementation. Further, Fig. 4 suggests that this final
Newton step should be initiated once the penalty reaches its
maximum value.

C. Quadrotor Maze

A quadrotor is tasked with navigating the maze (with floor
and ceiling constraints) shown in Fig. 5. The cost weighting
matrices are Q = I13×13, R = I4×4, Qf = 1000I13×13,
tf = 5.0s, and N = 101. Input constraints, 0 ≤ u ≤ 50, are
also enforced. The solvers are initialized with an infeasible
state trajectory indicated by the yellow points in Fig. 5
and inputs are initialized for hovering. ALTRO is able to
find a collision-free trajectory, while DIRCOL fails to find
collision-free trajectories even after being initialized with the
solution from ALTRO (denoted by “+” in Table I).

D. Robotic Arm Obstacle Avoidance

A Kuka iiwa robotic arm is tasked with moving its end-
effector through a set of closely spaced obstacles to a

https://github.com/JuliaCI/BenchmarkTools.jl

Fig. 4. Max constraint violation comparison for Escape. After reaching a
coarse tolerance (dashed black line) ALTRO∗ performs a single iteration
of Algorithm 5. DIRCOL satisfies the tolerance, but the first stage of
ALTRO fails to achieve the desired constraint tolerance, likely due to poor
numerical conditioning after reaching the maximum penalty (dotted red
line). Additionally, DIRCOL finds a slightly lower cost than ALTRO∗, 0.331
vs 0.333.

Fig. 5. Quadrotor navigating maze environment. ALTRO is initialized
with a cubic interpolation of the yellow spheres and converges to the green
trajectory. The quadrotor exhibits dynamic, aggressive banking maneuvers
to avoid the obstacles.

desired final position (see Fig. 6) using the cost function
Q = diag(I7×7, 100I

7×7)

V. CONCLUSION

We have presented a versatile high-performance trajectory
optimization algorithm, ALTRO, that combines the advan-
tages of both direct and indirect methods: fast convergence,
infeasible state trajectory initialization, anytime dynamic
feasibility, and high-precision constraint satisfaction. Our
preliminary implementation demonstrates competitive—and
often superior—performance on a number of benchmark
motion-planning problems when compared to direct colloca-
tion implemented with the Ipopt solver. We find that ALTRO
performs particularly well in comparison to DIRCOL on
problems involving obstacles and high-dimensional state
and input spaces. Future work will focus on improving
runtime performance by taking advantage of problem spar-
sity and parallelization. Our implementation of ALTRO is
available at https://github.com/RoboticExplorationLab/
TrajectoryOptimization.jl.

Fig. 6. Front (left) and side (right) views of Kuka iiwa arm moving end
effector from initial position (red) to desired position (green).

TABLE I
PEFORMANCE OF ALTRO VS DIRCOL

System Time (s) Iters Evals/Iter
Parallel Park 0.117 / 0.100 42 / 24 410 / 532
Parallel Park 0.098 / 0.154 20 / 37 912 / 493

Parallel Park (m.t.) 0.845 / 0.645 128 / 84 2176 / 465
Escape 2.83 / 9.08 37 / 79 357 / 948

Escape (ALTRO∗) 1.94 / 9.08 14 / 79 357 / 948
Quadrotor Maze 23.0 / 559+ 218 / 5000+ 320 / 2630+

Robotic Arm 14.3 / 313* 227 / 4692* 1050 / 822*

REFERENCES
[1] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for

Large-scale Constrained Optimization,” SIAM Review, vol. 47, no. 1, pp. 99–
131, 2005.

[2] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,” en,
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[3] D. Pardo, L. Möller, M. Neunert, A. W. Winkler, and J. Buchli, “Evaluating
direct transcription and nonlinear optimization methods for robot motion
planning,” pp. 1–9, Apr. 2015.

[4] C. R. Hargraves and S. W. Paris, “Direct Trajectory Optimization Using
Nonlinear Programming and Collocation,” J. Guidance, vol. 10, no. 4,
pp. 338–342, 1987.

[5] D. Q. Mayne, “A second-order gradient method of optimizing non- linear
discrete time systems,” Int J Control, vol. 3, p. 8595, 1966.

[6] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design for Non-
linear Biological Movement Systems,” in Proceedings of the 1st International
Conference on Informatics in Control, Automation and Robotics, Setubal,
Portugal, 2004.

[7] H. B. Keller, Numerical methods for two-point boundary-value problems.
Courier Dover Publications, 2018.

[8] Y. Tassa, T. Erez, and E. Todorov, “Control-Limited Differential Dynamic
Programming,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), May 2014.

[9] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming with
nonlinear constraints,” en, in 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, Singapore: IEEE, May 2017, pp. 695–
702.

[10] T. C. Lin and J. S. Arora, “Differential dynamic programming technique for
constrained optimal control,” en, Computational Mechanics, vol. 9, no. 1,
pp. 27–40, Jan. 1991.

[11] M. Giftthaler and J. Buchli, “A Projection Approach to Equality Constrained
Iterative Linear Quadratic Optimal Control,” en, 2017 IEEE-RAS 17th Inter-
national Conference on Humanoid Robotics (Humanoids), pp. 61–66, Nov.
2017.

[12] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained Unscented
Dynamic Programming,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017.

[13] G. Lantoine and R. P. Russell, “A Hybrid Differential Dynamic Programming
Algorithm for Constrained Optimal Control Problems. Part 1: Theory,” en,
Journal of Optimization Theory and Applications, vol. 154, no. 2, pp. 382–
417, Aug. 2012.

[14] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient
optimal planning and control framework for quadrupedal locomotion,” en, in

https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl
https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl

2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, Singapore: IEEE, May 2017, pp. 93–100.

[15] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific, 1996.

[16] J. Bellantoni and K. Dodge, “A square root formulation of the Kalman-
Schmidt filter,” AIAA journal, vol. 5, no. 7, pp. 1309–1314, 1967.

[17] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” en, Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393,
Oct. 1990.

	Introduction
	Background
	Iterative LQR
	Augmented Lagrangian

	The ALTRO Algorithm
	Square-Root Backward Pass
	Infeasible State Trajectory Initialization
	Minimum Time
	Projected Newton Method

	Simulation Results
	Parallel Parking
	Car Escape
	Quadrotor Maze
	Robotic Arm Obstacle Avoidance

	Conclusion

