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1 Introduction

Cooperation among autonomous agents has many important impacts both in
society and technology. As robots penetrate further into every-day life, they are
simultaneously required to solve more complex problems while being increas-
ingly safe. Though many tasks can be accomplished by a single robot, many
others benefit greatly from using a team of robots to accomplish the same task.
Imagine, for example, transporting a heavy load (say a package from Ama-
zon): you can either deploy a single large, expensive, and potentially dangerous
quadrotor, or deploy a group of many smaller quadrotors to lift the same load.
While the benefits of cost, versatility, safety, and deployability of the group are
clear, these benefits come at the cost of simplicity: controlling a single robot
is fairly straightforward, while coordinating a group of robots to cooperatively
accomplish a task becomes much more complicated.

This project aims to tackle the multi-robot consensus and formation control
problems through distributed optimization. Specifically, we leverage trajectory
optimization for motion planning of individual agents and Alternating Direction
Method of Multipliers to achieve consensus among the agents in a distributed
manner. Trajectory optimization is a powerful tool for motion planning, en-
abling the synthesis of dynamic motion for complex and often under-actuated
robotics systems. This general framework can be applied to robots with non-
linear dynamics and constraints where other motion planning paradigms—such
as sample-based planning or exploiting specialized dynamics as in the case of
differential flatness—are impractical. Trajectory optimization algorithms solve
following optimization problem,

minimize
x(t), u(t)

`(x(tf )) +

∫ tf

0

`(x(t), u(t))dt

subject to ẋ = f(x, u),

g(x, u) ≤ 0,

h(x, u) = 0.

(1)

In order to be tractable, in all but a few special cases, the infinite-dimensional
continuous-time optimization problem is discretized along the trajectory and a
numerical integration scheme is used to form discrete dynamics constraints,

minimize
x1:N , u1:N−1

`(xN ) +

N−1∑
k=0

`(xk, uk)dt

subject to xk+1 = fd(xk, uk),

g(xk, uk) ≤ 0,

h(xk, uk) = 0.

(2)

We propose to leverage the unique problem structure of trajectory opti-
mization for discrete robotic systems with simple interaction forces (e.g. several
quadrotors carrying a slung load) to generate locally optimal trajectories for a
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multi-agent system. Importantly, the robots considered will be both non-linear
and differential flatness will not be leveraged, so the algorithm will extend to
any group of robots. This stands in contrast to much of the multi-agent con-
trol literature which considers simple single or double-integrator dynamics with
independent dimensions.

In order keep the algorithm complexity linear (or better) with the number of
agents, we will use Alternating Direction Method of Multipliers (ADMM) to in-
dividually solve a trajectory optimization problem for each quadrotor and then
use the results to update the dual variables corresponding to the coupling con-
straints between them. The resulting algorithm will only require communication
of each quadrotor with a centralized agent that optimizes over the collective re-
sults from the individual quadrotors. The computational complexity is constant
in the number of agents thanks to the parallelization.

In Section 2 we review some prior work in this area, and in Section 3 provide
some background on the trajectory optimization framework used in this project,
as well as the basics of ADMM. Section 4 covers the problem formulation. Sec-
tions 5 and 6 show the algorithm in action in simulation and provide concluding
remarks.

2 Literature Review

Aerial vehicles have been used to transport heavy loads since the 1960s [1].
Common applications include: delivering fire retardant to fight forest fires, car-
rying beams for civil infrastructure projects, moving harvested trees, carrying
military vehicles, and transporting large animals. Because of their low cost,
quadrotors have become a defacto testbed for such aerial vehicle applications
and are typically classified in the literature as “UAVs with slung loads.” Quadro-
tors are differentially flat, and it has been shown that quadrotors with a cable
suspended load are also differentially flat which enables tracking control of ei-
ther the quadrotor or load with an SE(3) controller [11]. Again, exploiting
differential flatness, a Mixed Integer Program can formulated to model a hybrid
system with a quadrotor and slung load that can go slack [16]. In order to
perform more aggressive maneuvers a hybrid system is considered and solved
using Iterative LQR (trajectory optimization) [12]. Unlike the previous work
which required known trajectories for the quadrotor and load, the optimiza-
tion framework generates these trajectories automatically for the full quadrotor
state. Most recently, a slung load has been modeled as two revolute and one
prismatic joint with a desired trajectory being found by solving a Mathematical
Program with Complementary Constraints (which implicitly models the hybrid
modes) [17].

Multi-quadrotor systems have also been explored. An SO(3) controller can
be designed to track trajectories of an n-quadrotor lift system for a point mass
[10]. This work was extended to tracking for an n-quadrotor lift system for a
rigid body with finite size [14]. Both controllers model the load line as massless
kinematic links and track desired trajectories for the quadrotors or load. Re-
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lated to this work is a leader-follower consensus controller that avoids collisions
between quadrotors in a swarm [13].

An alternative to the bottom up (ie, simple controller) framework for achiev-
ing consensus within a multi-robot system is optimization. Alternating Direc-
tion Method of Multipliers (ADMM) is a distributed optimization algorithm
that breaks an optimization problem into subproblems that can be solved in
parallel (eg, on separate quadrotors). These subproblems achieve consensus by
the completion of the solve (to a desired tolerance) [8]. The ADMM frame-
work has been explored for multi-agent networks with asynchronous updates
[18] and trajectory planning that avoids collisions for multi-agent systems [9].
Distributed model predictive control has utilized ADMM to distribute compu-
tation across multi-robot systems to achieve formation control where the only
coupling between agents is an interaction constraint [19].

3 Background

3.1 Constrained iLQR

The discrete trajectory optimization problem 2 can be solved in many ways. “Di-
rect” methods transcribe states and inputs as decision variables and solve (2)
using general-purpose nonlinear programming (NLP) solvers such as SNOPT [6]
or Ipopt [7], and tend to be versatile and robust. It is straight forward to provide
an initial state trajectory to the solver in such methods, even if it is dynam-
ically infeasible. Direct transcription (DIRTRAN) [15] and direct collocation
(DIRCOL) [3] are common direct algorithms.

Alternatively, “indirect” methods leverage the structure of (2) to solve a
sequence of smaller sub-problems using Dynamic Programming. These are any-
time algorithms, meaning they are always strictly dynamically feasible, allowing
state and input trajectories at any iteration to be used in a tracking controller.
However, it is often difficult to find a suitable initial guess for the control tra-
jectory. Historically, indirect methods have been considered less robust and less
suitable for reasoning about general state and control constraints but tend to be
fast and amenable to implementation in embedded systems. Methods include
Differential Dynamic Programming (DDP) [2] and Iterative LQR (iLQR) [5], as
well as various shooting methods [20].

We recently developed ALTRO [21], an algorithm that combines the best
aspects of indirect and direct methods by using iLQR within an augmented La-
grangian framework, coupled with tricks to improve numerical conditioning and
robustness, provide initial state trajectories, and converge constraint satisfaction
to arbitrarily tight tolerances. The result is a fast, versatile, and robust tra-
jectory optimization solver amenable to implementation on embedded systems.
We’ve used it to generate collision-free trajectories for systems with nonlinear
dynamics, such as a quadrotor navigating a maze in Fig. 1.
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Figure 1: Quadrotor navigating a maze-like environment

3.2 Alternating Direction Method of Multipliers

Consider a convex optimization problem with a linearly separable cost function:

minimize
x, y, z

f(x) + g(y) + h(z)

subject to Ax+By + Cz = d
(3)

The augmented Lagrangian can be formed,

LA(x, y, z, λ)ρ = f(x) + g(y) + h(z) + λT (Ax+By + Cz − d) (4)

+
ρ

2
||Ax+By + Cz − d||22.

And the (sequential) ADMM updates for the primal and dual variables are as
follows,

xk+1 = arg max
x

LA(x, yk, zk) (5a)

yk+1 = arg max
y

LA(xk+1, y, zk) (5b)

zk+1 = arg max
z

LA(xk+1, yk+1, z) (5c)

λk+1 = λk + ρ(Axk+1 +Byk+1 + Czk+1 − d). (5d)

4 Problem Formulation

We develop a controller for a system of b quadrotors carrying a slung load. Each
quadrotor is modeled with thirteen-dimensional state dynamics (i.e., quaternion
representation) and the load is modeled as a point mass.
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4.1 Dynamics

The first step to developing the control algorithm is to define the dynamics of
the joint systems. We assume the following dynamics model for the quadrotor,

ẋ = v (6)

q̇ =
1

2
qω (7)

v̇ =
1

m
(RqF + Fext) + g (8)

ω̇ = J−1(τ − ω × Jω) (9)

ż = (ẋ, q̇, v̇, ω̇)T , (10)

where x ∈ R3 is the position, v ∈ R3 is the velocity, q ∈ R4 is the orientation
represented as a quaternion, and ω ∈ R3 is the angular velocity. F ∈ R3 and
τ ∈ R3 are the forces and torques from the motors, expressed in the body frame,
and Fext are the external forces. The double integrator dynamics are modeled
as, [

ẋ
ẍ

]
=

[
0 1
0 0

] [
x
ẋ

]
+

[
0

1
m (u+ Fext) + g

]
. (11)

Working from the framework given in [4], we write down the joint dynamics
by simply treating the cables as external forces, and subsequently constraining
the forces to be equal when we solve the problem. It is important that the
dynamics of each the agents be independent, otherwise minimizing over the
control inputs for one agent will affect the control and input trajectories for the
other agents during the iLQR solve, which enforces strict dynamic feasibility at
each iteration by simulating forward the trajectory. In the case of the team lift
problem, this is trivially accomplished by augmenting the control inputs with
the force from the cable. The dynamics for the mass are augmented with b 3-D
forces, f (m,i), corresponding to the equal and opposite f (i) acting on quadrotor
i, which is inserted into the dynamics as Fext. The number of states and control
inputs for the joint system is therefore n = 6+13b, m = 3b+(4+3)b, respectively.

4.2 Optimization Problem

As mentioned previously, our approach to solving this problem is to cast it as a
trajectory optimization problem of the form of (2). We define a separable cost
function with individual dynamics and joint constraints between each quadrotor
and the mass,

6



minimize
u1:N−1

`
(m)
f (x

(m)
N ) +

b∑
i=1

`
(i)
f (x

(i)
N )

+

N−1∑
k=0

[
`(m)(x

(m)
k , u

(m)
k ) +

b∑
i=1

`(i)(x
(i)
k , u

(i)
k )

]
subject to x

(i)
k+1 = f (i)(x

(i)
k , u

(i)
k ), i = 1, . . . , b,

x
(m)
k+1 = f (m)(x

(m)
k , u

(m)
k ),

f (m,i) = f (i), i = 1, . . . , b,∥∥∥x(i) − x(m)
∥∥∥ = d(i), i = 1, . . . , b,

(12)

where,

`(x, u) =
1

2
(x− xf )TQ(x− xf ) +

1

2
uTRu (13)

`f (x, u) =
1

2
(x− xf )TQf (x− xf ), (14)

x
(i)
k , u

(i)
k are the state and control input vectors for agent i at time step k,

and x
(m)
k , u

(m)
k are the state and control input vectors for the load. Written

without superscripts, xk, uk refer to the joint state and input vectors. The first
and second constraints enforce the dynamics, the third enforces Newton’s 3rd
law for the cables (equal and opposite forces), and the last constraint specifies
the length of the cable between the load and agent i, d(i). Note that in this
formulation we assume the cables are always taunt, which is a fair assumption
when working with 3 quadrotors. This assumption will be relaxed in future
work.

4.3 Solving with ADMM

With a separable cost function and independent dynamics, we are ready to solve
the problem using ADMM. The standard method for ADMM uses sequential
updates as shown in (5). The primal updates can also be done in parallel,
which reduces the time complexity of the algorithm but discards some of the
theoretical guarantees of the sequential version. Algorithms for the slung load
problem using both sequential and parallel updates are given in Algorithm 1
and Algorithm 2, respectively.

5 Results

In this section we present exploratory results using Double Integrator dynamics
before demonstrating the use of ADMM to solve the slung load problem for full
quadrotor state dynamics.
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Algorithm 1 Solve ADMM

1: function Admm step(x)
2: Initialize X(m), U (m), X(i), U (i)

3: for i=1:b do
4: Update agent i: X(i), U (i) using ILQR and most recent joint info
5: end for
6: Update mass: X(m), U (m) using ILQR and most recent joint info
7: Update joint Lagrange multipliers
8: Update joint penalty term
9: end function

Algorithm 2 Solve parallel ADMM

1: function Admm parallel step(x)
2: Initialize X(m), X(m), X(i), X(i) for all i
3: Initialize X(i), U (i) on each agent in parallel
4: for i=1:b do in parallel
5: Update agent i: X(i), U (i) using ILQR
6: Send X(i), X(i)

7: end for
8: Update mass: X(m), U (m) using ILQR
9: Update local Lagrange multipliers

10: Update local penalty term
11: for i=1:b do in parallel
12: Send: X(m), U (m) to agent i
13: Update local Lagrange multipliers
14: Update local penalty term
15: end for
16: end function
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Figure 2: Initial position (left) and final position (right) of 2 Double Integrators
and 1 Mass system.

5.1 Two Double Integrators and One Mass System in 2D

We use cost functions (13), (14) with Q = 10−3I, R = 10−3I, Qf = I for the
Integrators and Q = 06×6, R = 0.1I, Qf = 1000I for the Mass, with implicit
Euler integration, a horizon of tf = 1.0s, time step dt = 0.1s, and cable length
of d = 1. Sequential ADMM solves the problem in 0.76s and “parallel” ADMM
solves it in 2.56s. For reference, our solver ALTRO solves the joint problem in
0.16s. For this paper, we did not implement a parallelized update but rather
ran Algorithm (2) sequentially, mimicking the same behavior, but without the
performance boost of parallelization. Both successfully move the mass 10 units
in the x-direction see Fig. 2. The convergence rates for sequential and parallel
ADMM are shown in Fig. 3

5.2 Three Double Integrators and One Mass System in
3D

The problem is extended to three dimensions and three integrators carrying
a single point mass load. We use cost functions (13), (14) with Q = 10−2I,
R = 10−4I, Qf = 1000I for the Integrators and Q = 10−2I, R = 10−6I,
Qf = 1000I for the mass, with implicit Euler integration, a horizon of tf = 1.0s,
time step dt = 0.1s, and cable length of d = 1.63. Sequential ADMM solves the
problem in 2.58s and “parallel” ADMM solves it in 18.44s. Both successfully
move the mass 10 units in the x-direction see Fig. 4. The convergence rates for
sequential and parallel ADMM are shown in Fig. 5. For reference, our solver
ALTRO solves the joint problem in 0.117s (note that this is faster than the two
integrator system above, this is likely due to different cost functions).
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Figure 3: Maximum constraint violation during solve for 2 Double Integrators
and 1 Mass system.

Figure 4: Initial position (left) and final position (right) with xy (top) and xz
(bottom) views of 3 Double Integrators and 1 Mass system.
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Figure 5: Maximum constraint violation during solve for 3 Double Integrators
and 1 Mass system.

5.3 Three Quadrotors One Mass in 3D

Finally, we solve the slung load problem using thirteen-dimensional quadrotor
state dynamics. We use cost functions (13), (14) with Q = 10−2I, R = 10−4I,
Qf = 1000I for the quadrotors and Q = 10−2I, R = 10−5I, Qf = 10000I for
the mass, with third-order Runge Kutta integration, a horizon of tf = 5.0s,
time step dt = 0.35s, and cable length of d = 1.63. Sequential ADMM solves
the problem in 6.52s and successfully moves the mass 10 units in the x-direction.
For reference, our solver ALTRO solves the joint problem in 18.19s. See Fig. 6
for a 2D representation, Fig. 8 for a 3D visualization, and Fig. 9 for a collection
of snapshots of the system along its joint trajectory. The convergence rate for
sequential ADMM is shown in Fig. 7. Attempting to solve this system with the
parallel updates didn’t converge, and is left as future work.

6 Conclusion

We have demonstrated that it is possible for multi-agent systems comprised of
individual agents with complex dynamics to be coordinated in a useful fash-
ion by formulating the joint problem in an ADMM framework. Further, we
present initial results demonstrating that the slung load problem can be solved
in a parallel fashion. We find that for simple dynamics (e.g., double integrators)
solving the joint problem is often faster than using ADMM. However, the system
with full quaternion dynamics (sequential) ADMM solved the problem approxi-
mately three times faster. Future work includes a more careful implementation
to achieve faster runtime performance, including actual parallelization, and a
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Figure 6: Initial position (left) and final position (right) with xy (top) and xz
(bottom) views of 3 Quadrotors and 1 Mass system.

Figure 7: Maximum constraint violation during solve for 3 Quadrotors and 1
Mass system.
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Figure 8: 3D visualization of 3 Quadrotor and 1 Mass system moving from
initial position (left) to goal (right).

Figure 9: Collection of 5 snapshots along 3 Quadrotor 1 Mass system trajectory.

demonstration on hardware. The current implementation only considers cou-
pling constraints between agents but it should be straight-forward to consider
constraints on individual agents (e.g., thrust limits or obstacles) and handle
these during the individual solves using ALTRO for constrained minimization in-
stead of solving an unconstrained problem with iLQR. A final avenue of research
is exploring techniques for a completely decentralized outer loop update such
that no central coordination is required. Our Julia implementation can be found
at https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl/tree/ADMM.
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