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Learning an Optimal Policy for Police Resource
Allocation on Freeways

Brian Jackson, Taylor Howell, and Ola Shorinwa

Abstract—Anomaly detection is a well-studied area within
computer science and artificial intelligence given its extremely
useful applications in surveillance, driver assistance, and naviga-
tion. In this project, we apply a fundamental anomaly detection
algorithm using Principal Component Analysis (PCA) and a
Mixture of Gaussians model to the NGSIM highway dataset
of real-world vehicle trajectories in congested traffic conditions.
After identifying the feature distributions for anomalous drivers,
we apply these distributions to a simulator to learn an optimal
policy for police allocation to apprehend anomalous vehicles. We
formulate the police allocation problem as a Markov Decision
Process (MDP) and learn the optimal policy using reinforcement
learning (RL). The optimal policy allocates police resources to
apprehend drivers with higher citations, bypassing drivers with
lower citations.

Index Terms—EM algorithm, Principal Component Analysis,
Markov decision process, machine learning, reinforcement learn-
ing

I. INTRODUCTION

EACH year over 32,000 driving-related deaths and 2
million injuries occur on US roads [1]. We posit that

automatic traffic surveillance and efficient allocation of law
enforcement resources to apprehend anomalous drivers can
improve road safety. The purpose of this project is to develop
a framework for identifying “anomalous” drivers on freeways
and optimally allocating police resources to apprehend and
cite these drivers. In the context of this project, anomalous
drivers may or may not be breaking laws such as speeding,
tailgating, or weaving in and out of traffic; however, if their
driving style is significantly different than the rest of the cars
around them, some benefit may be derived in identifying the
underlying cause of their observed behavior. For instance, it
may be possible to identify drunk or impaired drivers, dis-
tracted drivers, and vehicle thieves or kidnappers. Surveillance
systems that automatically detect anomalous drivers can act as
useful tools to help law enforcement agencies more efficiently
sift through the thousands of drivers on the road and focus on
ones that “stand out.”

Once these drivers are identified, the allocation of scarce
resources (in this case, highway patrol vehicles) to optimally
apprehend suspicious or unlawful drivers is yet another chal-
lenge. In this project, we aim to solve both of these problems,
namely: identification of anomalous drivers, and finding an op-
timal policy for allocating police resources. The first problem
is solved by learning a mixture of Gaussians model from a
data set taken from actual highway data. The second problem
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is framed as a Markov decision process (MDP) and solved
using reinforcement learning (RL) techniques.

The problem of detecting anomalous driver is a well-
studied problem given its valuable applications in surveillance,
crisis prevention, driver assistance, and navigation. [2] gives
an overview of various approaches to anomalous behavior
detection, which are categorized into the following classes:
classification-based, parametric or non-parametric statistical,
nearest neighbor-based, clustering-based, spectral techniques,
and information theoretic. Many studies have taken a similar
approach to the one used in the current project. Notably,
Morris and Trivedi [3] propose an algorithm for extracting tra-
jectory information from camera data, compressing the feature
subspace using Principal Component Analysis (also used in the
current project), and then classifying the data using a variety of
unsupervised learning techniques including K-means, fuzzy-
C-means, and neural networks. New trajectories are assigned
a score rating on how anomalous they are, based upon the
distance to the nearest cluster. Other approaches have included
support-vector machines (SVMs) [4], Hidden-Markov Models
clustered using K-means [5], and semi-supervised learning [6].
The field of anomaly detection is a broad and very active area
of research, and presenting any sort of in-depth analysis of
the various approaches is beyond the scope of this project.
However, based on the cited papers, SVM techniques are
advantageous given their computational efficiency, while the
more traditional approach is advantageous given that it builds
a distribution that models “typical” driver behavior. The semi-
supervised learning approach showed promising results but
requires human-in-the-loop training and is susceptible to unde-
tected anomalies. It seems current state-of-the-art techniques
like the one presented by An and Cho [7] use deep-learning-
based autoencoders, that reduce feature dimensionality and
increase abstract generalization. An and Cho present an al-
gorithm for variation autoencoders (VAE) that combine deep
autoencoders with variational inference. Since it is a generative
model, it can also be used to derive the underlying model and
analyze the underlying cause of the anomaly.

Resource allocation is a fairly well-studied field, and the
topic of police allocation in particular has received some
attention. However, applying state-of-the-art decision making
algorithms to police allocation is very limited [8], and typically
based on optimizing deployment location rather than decid-
ing whether or not to deploy limited resources. Our project
therefore seems to be a novel application of decision-making
processes to learning an optimal policy for deploying police
in an uncertain environment with variable rewards.
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II. METHODOLOGY

The project is divided into three principal components:
1) preprocessing: analyzing and compressing real-world
highway-driving data, 2) anomaly detection: identifying
anomalous drivers from the dataset, and 3) the MDP: learning
an optimal policy for deploying police resources to cite
anomalous drivers and maximize ticket revenue. We assume
that it’s possible to detect anomalous driving behavior that
corresponds with traffic offenses on freeways and that it’s
possible to indirectly make the freeway safer by maximizing
ticket revenue. We will model highway driving behavior as
a mixture of Gaussians and characterize atypical driving
behavior as lying outside the modeled distributions. We will
be working with the NGSIM US Highway 101 data set, which
tracks vehicle trajectories in congested morning traffic along
a half mile section of Highway 101. We will use the EM
algorithm to train the model with features from these driving
trajectories.

Data Processing

We are using real-world driver data from the NGSIM US-
101 dataset. The data was captured using a set of cameras set
atop a 36-story building. This data has been processed into
vehicle trajectories that track individual vehicles and report
features such as width, length, velocity, position, lane, etc.
However, the original trajectory data contains significant noise
in the position, velocity, and acceleration estimates. We are us-
ing data that has been post-processed by members of Stanford
Intelligent Systems Laboratory (SISL), which improves state
estimates using a Kalman filter. The resulting data consists
of 45 minutes of vehicle trajectories, including about 6000
unique vehicle trajectories. From this filtered data, we have
constructed a training set consisting of features averaged over
15-second time intervals with 5 second spacing, resulting in
about 64,000 unique driver examples.

Each of these examples contains six features: average veloc-
ity, average acceleration, maximum velocity, number of lane
changes, average deviation from lane centers, and standard
deviation from lane centers. The velocity, acceleration, and
deviation from lane centers were all given by the filtered
dataset. The averages, maximums and standard deviation were
taken over the 15-second time window of interest. The number
of lane changes was determined by counting the number of
times the lane deviation varied by more than a fixed threshold
in a given time step (in either direction). The resulting features
should give a decent depiction of driver behavior over a
moderate time window and be sufficient to identify anomalous
behavior.

Anomaly Detection

1) EM Algorithm: We assumed that each example came
from a joint distribution p(x, z) = p(x|z)p(z) consisting of
four Gaussians (the number of latent distributions was selected
by balancing the number of anomalous drivers we wanted
to consider in the police allocation problem). Thus, each
x(i) was obtained by randomly choosing z(i) ∈ {1, 2, ..., k}

and then sampling x(i) from the corresponding Gaussian
distribution. We intend to learn the parameters of the joint
distribution p(x, z; θ) for the training examples where z(i)

represents the latent variables and θ = {φ, µ,Σ}. Finding a
closed form solution for the maximum likelihood estimates of
θ is difficult; hence, we used the EM algorithm for estimating
θ. The EM algorithm works by constructing a lower bound on
the log-likelihood of the training set `(θ) before optimizing
the lower bound. The algorithm is given below.

E-step: For each i,

Qi(z
(i)) := p(z(i)|x(i); θ)

M-step: Set

θ := argmax
θ

m∑
i

∑
z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

We use the estimated parameters in fitting a mixture of
Gaussians to the NGSIM data set and identify outliers using
a threshold p(x) < 0.0025.

2) Principal Component Analysis: We used principal com-
ponent analysis as a dimensionality reduction algorithm to
map the extracted features from 6 features to different feature
spaces ranging from sizes 2 to 5. The first k principal
components of the data were selected to maximize the variance
of the projections where the first principal component satisfies
the optimization problem:

u := argmax
u:uTu=1

1

m

m∑
i=1

(x(i)
T

u)2

We apply the EM algorithm to each of the resulting feature
spaces to obtain a model for classifying anomalous drivers.
The features of the anomalous drivers flagged by each model
was analyzed to evaluate the performance of each model.

The MDP

We have formulated the task of allocating police resources
on freeways as a discounted infinite-horizon Markov decision
process.

MDP Formulation: The state is defined by two variables:
the police state and the driver state. The police state is
the vector P = [p1 . . . pnp ] ∈ Znp of police car states
p ∈ {0, 1, ..., pmax}. Each integer pi represents the number of
time steps until the police car i is again available for allocation.
pi = 0 indicates that police i is ready for allocation. After
being allocated, pi = pmax and decrements by one each time
step. The driver state is the vector D = [d1 . . . dnd

] ∈ Znd

of driver states d ∈ {1, ..., dmax}. The integer values dj
correspond to the state of the anomalous vehicle j, defined
as by Table I.
The size of the state space is (pmax)np × (dmax)nd . For our
final solution, we set np = 1, nd = 2,, pmax = 5, and dmax =
4. (np = 2, nd = 4,, pmax = 5, and dmax = 4).

The action space defines the allocation of police cars in P .
The action a = {0, 1, . . . , np} ∈ Z corresponds to the number
of citations to deliver. It is assumed that the vehicles in D with
the highest reward will be cited.
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d Reward Description Conditions
1 50 No citation Not 2 or 3
2 100 Speeder Speed > 17 m/s
3 150 Weaver # lane changes > 3
4 250 Both Both 2 & 3

TABLE I
DEFINITION OF ANOMALOUS VEHICLE STATES

The rewards are deterministically assigned: each vehicle
state pj is assigned a particular reward according to the
simulator which queries the anomaly detector, as shown in
Table I. If a > 0, the resulting reward is the sum of the a
highest rewards corresponding to states in D. If a > 0 and
pi 6= 0,∀pi ∈ P (no police available), then a penalty of -100
was assigned.

Scene simulation: Since the NGSIM data set only gives
us a finite amount of experience, we created a simulator that
samples from distributions based upon the NGSIM data set.
The simulator maintains an internal “scene” of anomalous
vehicles. A scene contains 10 vehicles, specified by the
features listed in section II, in addition to a unique vehicle
ID and a time stamp. The time stamp of each vehicle is
decremented at each time step and vehicles with negative time
stamps are removed from the scene. The features are sampled
from independent distributions. The authors acknowledge that
in reality the anomalous drivers are more likely to belong to
a multivariate distribution that encodes dependence between
different features, such as average velocity and number of lane
changes, but for simplicity these features were assumed to be
independent, and the resulting samples will consequently not
be guaranteed to be anomalous. However, only nd of the 10
vehicles are selected from each scene, according to highest
reward. This is a fair assumption since it would clearly be
sub-optimal to issue a citation to a vehicle known to yield
less reward (given our previous assumption that the rewards
are deterministic). At each time step, new vehicles are added
to keep the total number of vehicles in each scene constant.
New vehicles were always initialized with a time stamp of
pmax (described above). The time stamp was included with
the purpose of modeling the fact that drivers can only be
observed for a fixed amount of time and that the police only
have a finite amount of time to decide whether or not to
apprehend the vehicle. After adding the new vehicles, they
are assigned a state value as a deterministic function of their
features (maximum velocity and number of lane changes),
according to the conditions listed in Table I. The distribution of
vehicle state values used in the simulation is shown in Figure
1. It should be noted that the threshold for speeding (17 m/s,
or 38 mph) is lower than the actual speed limit (65 mph).
The average maximum speed of the drivers in the data set
was found to be 11.176 m/s which was expected as the data
was recorded during heavily congested morning traffic. Thus,
the chosen speed limit reflects anomalous behavior among
the population of drivers in the data set. Figure 1) shows the
distribution over the features of the anomalous drivers.

At each time step, the simulator accepts a state/action tuple
and returns the new state and reward. Based on the input
state and action, it issues citations to the vehicles in D with

Fig. 1. Distribution of individual vehicle states used by simulation

the highest reward and removes them from the scene. It then
updates the scene by decrementing the time stamps and adding
new vehicles.

Solving the MDP: We use model-based reinforcement learn-
ing to find an optimal policy for the MDP. The agent gains
experience by interacting with the simulator for n = 100
time steps before updating the transition T (s′|s, a) and reward
R(s, a) models using maximum likelihood estimates. Asyn-
chronous value iteration is performed on the Bellman equation
(Eq. 1).

U∗(s) := max
a

(
R(s, a) + γ

∑
s′

T (s′|s, a)U∗(s′)
)

(1)

An update to the value function was assumed to have
converged when the maximum absolute difference in value
functions ||Uk − Uk−1||∞ < 0.005. The learning procedure
was repeated until 10 consecutive updates of the the value
function converged on the first iteration. The optimal policy
π∗(s) was obtained from the optimal value function.

π∗(s) := argmax
a

(
R(s, a) + γ

∑
s′

T (s′|s, a)U∗(s′)
)

To evaluate the optimal policy, we calculate the cumulative
rewards per allocation over a 1000 step episode (and average
the results over 5 episodes) for the optimal policy and similarly
compare it against an randomly-send policy that randomly
assigns police vehicles to apprehend offending drivers if police
are available and an always-send policy that assigns the
maximum number of available police vehicles at each time
step.

III. RESULTS

A. Anomaly Detection

New feature sets of sizes ranging from 2 to 4 were con-
structed from the highway data set using PCA. These feature
sets were evaluated against the baseline model consisting of six
features. The anomaly detection model was created by fitting
four Gaussians to each feature set. Anomalous drivers were
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Size of feature space Percentage of anomalous drivers (%)
2 0.249
3 3.648
4 5.356
5 29.514

TABLE II
PERCENTAGE OF ANOMALOUS DRIVERS FOR EACH MODEL

Fig. 2. Histogram of number of lane changes of anomalous drivers for the
two-feature and baseline models

identified using a threshold p(x) < 0.0025. Table II shows
the percentage of anomalous drivers flagged by each model.
The number of anomalous drivers decreases with the size of
the feature space.The baseline model flagged about 30% of
drivers as atypical while the two-feature set model identified
a substantially lower percentage of atypical drivers, 0.25%.
The three-feature and four-feature models classified about 4%
and 6% of drivers as atypical respectively.

The features of the flagged drivers were analyzed to further
evaluate the effects of dimensionality reduction using PCA.
Figure 2 shows the histogram of the number of lane changes of
outliers identified by the two-feature and baseline models. The
two-feature model flags drivers having a high number of lane
changes with high probability compared to the baseline model.
The drivers with zero lane changes which were classified as
anomalous exceeded the acceptable limits on other features.

Figure 3 shows the normalized histograms of the maximum
velocity of the anomalous drivers identified by the two-feature
and baseline models. The two-feature model performs remark-
ably well in identifying drivers moving at high velocities
in addition to slow-moving drivers who might have been
distracted. The baseline model seems more susceptible to
noise, flagging a greater proportion of drivers with acceptable
maximum velocities as anomalous.

Figure 4 shows the normalized histograms of the average
acceleration of anomalous drivers identified by the two-feature
and baseline models. The two-feature model performs consid-
erably well in identifying drivers with extreme accelerations,
flagging such drivers as anomalous with a high probability. In
contrast, drivers with acceptable accelerations have a higher
probability of being flagged anomalous by the baseline model
compared with drivers with extreme accelerations. The results
show that the application of PCA helped reduce the suscepti-

Fig. 3. Histogram of the maximum velocity of anomalous drivers for the
two-feature and baseline models

Fig. 4. Histogram of average acceleration of anomalous drivers for the two-
feature and baseline models

bility of the model to noisy observations, ultimately improving
the accuracy of the anomaly detection algorithm. The PCA
model retained the valuable variations among the feature
attributes while discarding noisy variations which resulted in
the model flagging a lower percentage of drivers as anomalous.
The application of PCA also provided computational benefits
by reducing the size of the feature sets. Such computational
benefits scale with the size of the training set.

The simulator for the MDP generates new anomalous ve-
hicles by sampling from independent distributions over each
feature. The distributions over these features were created from
the anomalous drivers identified by the two-feature model. The
normalized histograms of the features are multi-modal; hence,
the features could not be modeled as a unimodal Gaussian
distribution. We estimated the distribution using a normal
kernel distribution with different bandwidths. The bandwidth
parameter controls the smoothness of the probability density
curve. Figure 5 shows the fitted probability distributions over
the features for different bandwidths. The default bandwidth
parameter shown in the figure results from optimizing the
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Fig. 5. Kernel distribution over the (a) number of lane changes, (b) average
velocity, and (c) maximum velocity and (d) average acceleration for different
bandwidths

mean integrated square error. A bandwidth parameter of one
provided better estimations of the probability density curves of
the number of lane changes, average velocity, and maximum
velocity, showing the major peaks in the probability density
curve for these features. The kernel distribution using the
theoretically optimal bandwidth parameter provided a better
estimate of the probability density curve of the average accel-
eration and was used by the simulator.

B. Optimal Policy

For the simple MDP with one police and two anomalous
drivers, solving for the optimal policy took 2135.18 seconds,
converging after 21,000 epochs (100 steps of experience per
epoch). An ε-greedy strategy was used with ε = 0.1 and a
discount factor γ = 0.9. For any state with no police to allocate
(i.e.,

∑np

i=1 pi = 0) the police learned to do nothing (i.e., action
= 0) which is optimal since taking any other action in this
state will result in a negative reward. To better understand the
policy, we examine the policy at critical states where police are
available for allocation (i.e., pi = 0). For these states, we find
that there is some threshold such that drivers with low reward
values are not cited. We found that drivers with di < 3 were
not cited. This demonstrates that our agent was able to learn an
intelligent policy that enables it to delay immediate reward for
greater future reward. We compare the optimal policy with a
randomly-send policy (if

∑np

i=1 pi > 0 then a random number
of available police are allocated, else no police are allocated)
and always-send policy (number of police allocated =

∑np

i=1.
Because we are interested in efficiently allocating resources,
we compare the average cumulative reward per allocation for
each policy for a 1000 step episode for 5 trials and then
average the results. The results of the learned optimal policy
for the during training versus the ”expert” policies are shown
in Figure 6.
The actual learned policy (and value function U∗) for key
states is shown in Table III against the expert policies.

State Value Policy
d1 d2 p1 U* Optimal Always Random
1 1 0 333.209 0 1 0
2 1 0 341.488 0 1 0
3 1 0 372.812 1 1 1
4 1 0 454.712 1 1 1
2 2 0 341.113 0 1 0
3 2 0 377.063 1 1 1
4 2 0 475.914 1 1 0
3 3 0 377.997 1 1 1
4 3 0 478.403 1 1 0
4 4 0 496.187 1 1 1

TABLE III
POLICIES FOR CRITICAL STATES
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Fig. 6. Learning Curve

IV. CONCLUSION

Driving behavior on freeways can be modeled by fitting
a mixture of Gaussians to the trajectory data of the drivers.
Anomalous drivers can be identified using the resulting model
with a given threshold p(x) < ε, indicating the probability
of a driver’s behavior lying outside the acceptable range. We
applied PCA as a dimension-reduction algorithm before fitting
the model. Our results indicate that the application of PCA
improved the accuracy of the algorithm. The PCA models
also reduced the number of flagged drivers to more realistic
proportions between 0.2% and 0.5%. Such findings suggest
that PCA improved the resilience of our model to sensor and
driver noise. We were also able to learn an optimal policy
for police allocation. As expected, the optimal policy does not
allocate police vehicles to anomalous drivers with low citation
rewards, preferring to reserve those vehicles for future time
steps when drivers with higher citations might be identified.
Consequently, our agent was able to maximize the citation
rewards with a minimal number of police allocations.

The features of anomalous drivers are not independent
as assumed in our generation of new anomalous drivers.
To address this, we intend to train a generative adversarial
network to generate new anomalous drivers for the MDP
simulator. We also expect the optimal policy (reserving police
vehicles for drivers with higher citations) to scale to a larger
state space with more police vehicles and anomalous drivers
and plan to test this hypothesis.
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