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Exploring Quadrature Rules in Direct Collocation
Methods for Trajectory Optimization

Brian Jackson

Abstract—This paper presents an introduction to direct col-
location for trajectory optimization using both trapezoidal and
Hermite-Simpson quadrature schemes. It sets forth a basic work
flow for implementing direct collocation, which is applied to a
simple example of controlling an inverted pendulum. The differ-
ences between the trapezoidal and Hermite-Simpson quadrature
schemes are compared, along with the effect of increasing the
number of segments.

Index Terms—trajectory optimization, optimal control, direct
collocation, tutorial

I. INTRODUCTION

Nearly all robotic systems are mobile: they need to move
around an environment in order to accomplish some task. In
order to move efficiently and safely, autonomous robotic sys-
tems plan trajectories through their environment. The field of
trajectory optimization focuses on finding these trajectories—
which may be subject to constraints due to the environment
(obstacles), dynamics, actuator limits, or energy reserves—
while minimizing some cost function. Given the complex and
nonlinear nature of the general form of these optimizations
and the exact solution is often nearly impossible to compute,
many approximate methods have been developed. In general,
methods for solving the trajectory optimization can be catego-
rized into direct and indirect methods. Due to their flexibility
in explicitly handling different types of constraints, along with
their relative robustness to initial guesses, direct methods are a
common and powerful option. Direct collocation (or transcrip-
tion) methods, in particular, have enjoyed considerable success
and attention within the field of trajectory optimization [1], [2].

This purpose of this project is to investigate different
quadrature rules used in direct collocation, and present the
direct collocation method in an accessible manner for those
who may be new to the field of trajectory optimization and
the direct collocation method. Section II will briefly define the
trajectory optimization problem, and Section III will describe
how to apply direct collocation to trajectory optimization prob-
lems, using both trapezoidal and Hermite-Simpson quadrature
rules. Pseudo-spectral methods will also briefly be discussed.
Section IV will give a detailed example of applying direct
collocation to control an inverted pendulum, and Section V
will describe the results comparing the different quadrature
rules. Lastly, some concluding remarks are given in Section
VI.
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II. TRAJECTORY OPTIMIZATION

The trajectory optimization problem can be described as
follows: determine the state-control function pair, t → (x ∈
X, u ∈ U), and clock times t0, tf that solve

minimize
x

J(x, u, t0, tf ) = E(x0, xf , t0, tf ) +

∫ tf

t0

F (x(t), u(t), t)dt

subject to ẋ(t) = f(x(t), u(t), t)

eL ≤ e(x0, xf , t0, tf ) ≤ eU

hL ≤ h(x(t), u(t), t) ≤ hU

where E(x0, xf , t0, tf ) and F (x(t), u(t), t) are the bound-
ary and integral costs, f(x(t), u(t), t) are the system dy-
namics, e(x0, xf , t0, tf ) are the boundary constraints, and
h(x(t), u(t), t) are the path constraints.

III. DIRECT COLLOCATION

Direct methods, as opposed to indirect methods, solve the
trajectory optimization described above by discretizing the
problem and converting it into a non-linear program. A non-
linear program is typically formulated as follows:

minimize
x

J(z)

subject to f(z) = 0

g(z) ≤ 0

zL ≤ z ≤ zU

A variety of software packages exist for solving non-linear
programs, such as SNOPT, IPOPT, or MATLAB’s fmincon
function.

Direct collocation discretizes the problem in time into N
segments with N + 1 collocation points as follows:

t→ t0, . . . , tk, . . . , tN

x→ x0, . . . , xk, . . . , tN

u→ u0, . . . , uk, . . . , uN

(1)

The continuous functions of time, states, and controls
are approximated as piecewise polynomials, i.e. splines. The
points at which the polynomials connect are referred to as
knot points. In the traditional methods detailed in this paper,
the collocation and knot points coincide; however, this is
not necessarily the case. The order of the approximating
polynomials is determined by the quadrature rule employed
by the collocation.



PRINCIPLES OF OPTIMAL CONTROL (AA203), JUNE 2018 2

A. The Collocation Process

The steps of the collocation (or transcription) process can
be summarized as follows:

1) Discretize time
2) Choose initial guess
3) Create the augmented state
4) Calculate the constraints
5) Solve the NLP
6) Interpolate
1) Discretize time: This consists of simply selecting N +

1 points in time. For simplicity, these points are generally
uniformly spaced. This discretizes the problem as shown in
Eq. 1.

2) Choose initial guess: Both indirect and direct methods
require an initial guess for the solution. It is usually sufficient
to guess a linear interpolation from beginning to final condi-
tions. For more ideas on initialization, see [2].

3) Create the augmented state: The state variable z passed
into the NLP solver is the augmented state of all of the decision
variables, including the initial and final time, state, and control
values at each of the collocation points:

z = [t0, tf , x0, u0, x1, u1, . . . , xk, uk, . . . , xN , uN ]

For ease of implementation, it is good prac-
tice to define functions for the mappings
z → {(ti, tf ), (x0, . . . , xN ), (u0, . . . , uN )} and
{(ti, tf ), (x0, . . . , xN ), (u0, . . . , uN )} → z.

4) Calculate the constraints: The path and boundary con-
straints are straight-forward to formulate at each of the col-
location points (i.e. for each of the augmented states). The
differential constraints imposed by the system dynamics, how-
ever, are determined by the quadrature rule selected. Details
on formulating these constraints for trapezoidal and Hermite-
Simpson quadratures are given in Section III-B.

5) Solve the NLP: With the augmented state and constraints
formulated, the only missing piece to formulate the NLP is
the objective function. The objective function is formulated as
follows:

J = E(x0, xN ) +

N∑
k=0

wkF (xk, uk, tk) (2)

where wk are the weights at each collocation point, determined
by the quadrature scheme.

6) Interpolate: The NLP solver will solve for the state
and control values at the collocation points. However, the
collocation grid often too coarse for fine-tuned control. The
values between collocation points can be approximated by
interpolating over the piece-wise polynomials defined by the
quadrature scheme. It is important to note that the quadrature
defines a nth order polynomial over ẋ and u. This results in
an (n+ 1)th order polynomial for the state values.

B. Quadrature Schemes

Quadrature rules determine 3 aspects of the collocation
process: 1) formulation for the dynamic constraints, 2) weights
applied on the objective function, and 3) interpolation func-
tions. Each of these will be shown for both trapezoidal and

Hermite-Simpson quadrature schemes. Lastly, pseudospectral
methods will be briefly described. In the following formulas,
let ∆tk := tk+1 − tk, and τ := t− tk.

1) Trapezoidal: For a generic integral, the trapezoid ap-
proximation is: ∫ b

a

f(x) ≈ ∆t

2
(f(a) + f(b))

Dynamic constraints: We can express the dynamics con-
straint as follows:

ẋ = f∫ tk+1

tk

ẋdx =

∫ tk+1

tk

fdt

xk − xk+1 ≈
∆tk

2
(fk + fk+1)

(3)

which is applied to all collocation points for k ∈
0, 1, . . . , (N − 1).

Weights: The objective function is approximated as:∫ tf

t0

F (x(t), u(t), t)dx ≈
N−1∑
k=0

∆tk
2

(Fk + Fk+1)

≈wNFN
N−1∑
k=0

wkFk

(4)

where w0 = 1
2 , w1, . . . , wN−1 = 1, wN = 1

2 .
Interpolation: For the control values, we can interpolate

using a simple linear interpolation for t ∈ [tk, tk+1]:

u(t) ≈ uk +
τ

∆tk
(uk+1 − uk)

For the state values, we have the following from the
collocation equations: f(t) = ẋ ≈ fk + τ

∆tk
(fk+1 − fk). To

interpolate the state we integrate and apply initial conditions
x(0) = xk:

x(t) ≈ xk + fkτ +
τ2

2∆tk
(fk+1 − fk)

2) Hermite-Simpson: For a generic integral, the Simpson
approximation is:∫ b

a

f(x) ≈ ∆t

6
(f(a) + 4f(c) + f(b))

where c := b−a
2 is the midpoint of the interval.

Dynamic constraints: Following an identical procedure to
the trapezoidal method, we find:

xk − xk+1 ≈
∆t

6
(fk + 4fk+ 1

2
+ fk+1)

With Hermite-Simpson we now constrain the midpoints of the
intervals to get second-order approximation:

xk+ 1
2

=
1

2
(xk + xk+1) +

1

8
(fk − fk−1)

This relation can either be substituted into Eq III-B2 to get
compressed form, or used as additional collocation points
separated form. This paper will assumed separated form.
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Weights: The integral term in the cost function can be
approximated as:∫ tf

t0

F (x(t), u(t), t)dx ≈ wNFN
N−1∑
k=0

wkFk

with w0 = 1
3 , w2,4,...,N−3,N−1 = 4

3 , w3,5,...,N−2 = 2
3 , wN =

1
3

Interpolation: The derivations for the interpolation equa-
tions for quadratic and cubic are not given here, but are given
in [2], and stated here for reference:

u(t) =
2

∆t2K
(τ−∆tk

2
)(τ−∆tk)uk−

4

∆t2k
(τ)(τ−∆tk)uk+ 1

2

+
2

∆t2K
(τ)(τ − ∆tk

2
)uk+1 (5)

x(t) = xk + fk
τ

∆tk
+

1

2
(−3fk + 4fk+ 1

2
− fk−1)

( τ

∆tk

)2

+
1

3
(2fk − 4fk+ 1

2
+ 2fk+1)

( τ

∆tk

)3

(6)

3) Pseudospectral Methods: One can readily assume that
better accuracy in collocation methods can be achieved by
increasing the order of the polynomial basis functions. This
is accomplished using orthogonal polynomials, typical of the
Chebyshev or Legendre type. These arbitrarily high-order
polynomials can either be applied between collocation points,
or can be applied globally to fit the entire trajectory, when it
is then referred to as pseudospectral methods [3].

Grid selection in pseudospectral methods is non-trivial,
since the specific points and their assigned weights can
significantly affect the numerical performance of the algo-
rithm. Uniform grids, for example, exhibit extremely poor
performance. Typical grids include Gauss, Radau, and Lobatto
points. Essentially these variants change whether or not points
are placed at the endpoints of the spline. For Lobatto points,
collocation points are placed at both of the endpoints; there-
fore, trapezoidal and Hermite-Simpson methods can both be
categorized as Lobatto.

One of the most important reasons to use pseudospectral
methods is for their convergence characteristics. It can be
shown that the convergence rate is exponential in order of
the polynomial [2], under certain conditions. These methods
have been employed on a variety of systems with significant
success. In 2006, pseudospectral control methods were used
on the International Space Station for a certain attitude adjust-
ment maneuver, and are particularly well-suite for aerospace
applications [3].

IV. EXAMPLE APPLICATION

A. Setting up the problem

For a concrete example, direct collocation is implemented
on an inverted pendulum with both trapezoidal and Hermite-
Simpson quadrature rules. The goal is to move the system
from the origin to x = 0.5 and θ = π in 2 seconds,
minimizing energy. The horizontal movement is constrained
within −0.6 ≤ x ≤ 0.6, with forces under 30 N.

1) Discretize time: The time was discretized into N seg-
ments of equal length from 0 to 2 seconds.

2) Choose initial guess: The initial guess used a simple
linear interpolation from the initial to final state at each of the
collocation points.

3) Create augmented state: Since there are 4 states in the
inverted pendulum problem, x = [x, v, θ, ω]T , and 1 control,
the augmented state was created by stacking each of the N
states and controls, along with the initial and final time, into a
vector of length 2 + 5(N + 1) for the trapezoidal method. For
the Hermite-Simpson method, the separated form was used so
there were 2 + 5(2N + 1) states.

4) Calculate the constraints: The constraints were calcu-
lated according to the forms given in Section III-B.

5) Solve the NLP: MATLAB’s fmincon solver was used to
solve the NLP. The objective function summing the weighted
square of the control values was passed in with the initial state,
along with the lb and ub parameters, both of which were of
the same size as the state vector. The dynamics constraints
were implemented using the nonlcon, argument, a function
handle which returned a 4(2N +1) length vector in Ceq. The
problem was solved using the default interior-point algorithm.

6) Interpolate: After getting the results at the collocation
points from fmincon, interpolation function for both controls
and states were used to find values between collocation points.

B. Error Analysis

There are several different ways of quantifying error in
collocation methods, but a common one is to see how well
the problem satisfies the dynamics between collocation points.
Let x̂(t) and û(t) be the interpolated state and control values
at an arbitrary time t. We can evaluate the dynamics using
these estimated value as f̂(x̂, û). We can then compare this to
the dynamics subject to the spline interpolation directly on the
dynamics values by calculating fk(xk, uk) at each collocation
point. The intermediate values can then be interpolated using
the same interpolation used for the controls (linear order for
trapezoidal, quadratic for Hermite-Simpson). We will denote
these as ˆ̇x(t). The error can then be expressed as:

ε(t) = ˆ̇x− f̂(x̂, û)

which can then be used to calculate a total error between each
collocation point:

ηk =

∫ tk+1

tk

|ε(τ)|dτ (7)

which is typically evaluated using numerical integration with
Rhomberg quadrature.

V. RESULTS

Figures 1 and 2 give some results from solving the problem
with Hermite-Simpson quadrature and 20 segments. Figure 1
shows frames from the motion of the inverted pendulum. It can
be easily seen that the behavior matches the expected behavior
when the goal is placed close to the right-hand boundary in x.
Figure 2 shows the state values along with collocation errors
for each segment, as calculated by Eq. 7. It’s easy to see that
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Fig. 1. Trajectory for the inverted pendulum

Fig. 2. State and state error values. Note that the maximum error corresponds
to states with high velocities

Fig. 3. Comparison between quadrature rules for a varying number of
segments

Fig. 4. Overlay of trajectories when solved with the different quadrature
schemes and different number of segments. As the number of segments
increases, the two quadrature schemes approach the same solution. However,
for solutions with few segments (the blue and light red lines) the solution is
significantly different.

the maximum errors coincide with high velocities, particular
angular velocities. It would therefore be reasonable to refine
the collocation mesh at those points to reduce errors.

Figures 3 and 4 show results from comparing the two
quadrature schemes with an increasing number of segments
(note that since the separated form of Hermite-Simpson collo-
cation was used, the number of collocation points is effectively
doubled over that of the trapezoidal method for the same
number of segments). The results match the expected behavior,
since the trapezoidal methods run significantly faster but at the
cost of higher error and objective values. Figure 4 shows that
having too few segments will result in poor trajectories that
don’t match the expected behavior. This is also shown by the
relatively sharp decreases in error and objective value when
increasing the number of collocation points when there are
few points.

Lastly, I tried initializing the solver with the results of
previous runs. In most cases, the time savings was not sig-
nificant, which was surprising. This could be due to some of
the tolerance values in the solver, and the fact that very few of
the collocation points will match when increasing the number
of points and using a uniform grid.

VI. CONCLUSION

This project offers an overview of implementing direct
collocation from scratch, and is written with the intent of
helping others will relatively little introduction to collocation
methods gain a better understanding of the methods and how
to implement them. I definitely have gained a much deeper
understanding of how these algorithms work and clarified
many points that were very unclear to me after the lecture
on collocation. I look forward to taking this knowledge and
applying it to more difficult and meaningful optimal control
problems in the future.
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